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A B S T R A C T

In this paper, a nonlinear constitutive model for rockfill materials is proposed to account for the coupling in-
fluence of the mean effective stress p and the deviatoric stress q on the deformation of rockfill materials. In the
model, the stress-dilatancy relationship derived from the microstructural changes of granular materials is
adopted, and the strength nonlinearity of rockfill materials is considered by using a logarithmic relationship
between the peak friction angle and the mean effective stress. The SMP criterion is incorporated into the model
to consider the influence of the intermediate principal stress. The good performance of the proposed model is
demonstrated through modelling triaxial tests on rockfill materials from a rockfill dam. In addition, the FEM
simulated deformation of a real CFRD using the proposed model agrees well with the monitored data.

1. Introduction

Rockfill dams have been widely adopted due to the inherent flex-
ibility and adaptability to different foundation conditions. In addition,
due to the increasing construction technology, the rockfill dams have
become the most economical dam type. As the main component of the
dams, rockfill materials is of profound importance to the stability and
the safe operation of the dams. In general, the strength and deformation
properties of rockfill materials are very complicated [1–4]. For ex-
ample, peak shear strength decreases with the confining stress in-
creasing, exhibiting a non-linear function of confining stress; shear in-
duced volume deformation (contraction or dilatation) is not negligible.
Apparently, an ideal constitutive modelling of rockfill materials need
reasonably reflect these complex behaviors.

So far, many constitutive models for rockfill materials have been
developed. These models can be classified as (1) nonlinear hypoelastic
models [5,6], (2) incrementally nonlinear models [7,8], (3) elasto-
plastic models [9–17], (4) hypoplastic models [18–21], and (5) mi-
cromechanics-based models [22–25]. In general, the first four cate-
gories are phenomenological models, which are commonly adopted in
engineering practice due to their efficiency in finite-element analyses.

Nonlinear hypoelastic models, especially Duncan-Chang Model [5]
and K-G models [6,26–28], are mostly adopted in the finite-element
analyses of rockfill dams owing to the simplicity and easily-under-
standable concept of the models. However, the Duncan-Chang Model

cannot take the influence of the intermediate principal stress into
consideration as the Mohr-Coulomb failure criterion of soils is used.
Moreover, the dilatancy of rockfill materials cannot be reflected in the
model as the shear-induced volume change is not considered. As a re-
sult, the Duncan-Chang Model sometimes overestimates the settlements
of rockfill dams when it is adopted in the finite element analysis for
rockfill dams, especially for medium and low dams. Domaschuk and
Villiappan firstly proposed a K-G model in 1975 [6], and later many
improvements [26–28] have been made to describe the coupling in-
fluences of mean effective stress p and deviatoric stress q on the de-
formation of rockfill material.

This paper presents a simple nonlinear constitutive model for
rockfill materials that can consider the coupling influence of the mean
effective stress p and the deviatoric stress q and the influence of the
intermediate principal stress on the deformation of rockfill materials.
The determination method for the model parameters is suggested.
Afterwards, the proposed constitutive model is adopted in finite ele-
ment method to simulate the deformation of a real concrete-faced
rockfill dam (CFRD) with adequate monitoring data.

2. Nonlinear constitutive model

2.1. Framework of the model

In this study, a nonlinear hypoelastic constitutive model for rockfill
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materials attempts to be developed. In the constitutive modeling, the
general relationship between incremental strains and incremental
stresses is given by

=dε C σ dσ( )kl ijkl mn kl (1)

where Cijkl are complementary constitutive tensors (or moduli) that are
stress level dependent. The stress-strain behavior is more conveniently
described using the parameters p, q, εv and εs defined as

=

= − + − + −
= + +

= − + − + −

⎫

⎬

⎪
⎪

⎭

⎪
⎪

+ +p

q σ σ σ σ σ σ
ε ε ε ε

ε ε ε ε ε ε ε

( ) ( ) ( )

( ) ( ) ( )

σ σ σ

v

s

( )
3

1
2 1 2

2
2 3

2
3 1

2

1 2 3
2

3 1 2
2

2 3
2

3 1
2

1 2 3

(2)

In p-q stress space, Eq. (1) can be derived as

= +dε
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1 (3a)
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J
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2 (3b)

where K is a bulk modulus, representing the volumetric stiffness with
respect to dp; J1 is a shear dilatancy modulus (coupling modulus), ac-
counting for the volumetric strain produced by an increment dq; G is a
shear modulus that controls shear strain with respect to dq; and J2 is
another coupling modulus, accounting for the shear strain produced by
an increment dp. Generally, the coupling moduli J1 and J2 are different,
and it’s not easy to determine them separately from experimentally
observed stress-strain data. For the sake of simplicity, either = ∞J2 or

= =J J J1 2 was assumed by some scholars [26,28]. For the assumption
of = ∞J2 , the model cannot incorporate shear strains generated by
changes in mean effective stress p. Also, the assumption of = ∞J2 leads
to the non-symmetry of the general matrix of the model. As a result, it is
difficult to use some existing efficient linear equation solvers in FEM.
These two shortcomings can be avoided in the assumption of

= =J J J1 2 . Therefore, this paper adopted the assumption of = =J J J1 2 ,
that is to say, the −dp dεs coupling and the −dq dεv coupling are
controlled by the same J modulus. Positive dilatancy, that is, expansion
during shearing, is associated with J < 0. Compression during
shearing produces J > 0.

2.2. Derivation of hypoelastic K, G and J modulus functions

2.2.1. Bulk modulus K
The bulk modulus K relates the volumetric strain εv to the mean

effective stress p, which is commonly determined though isotropic
compression tests. The results of isotropic compression tests on rockfill
materials indicate that the relationship between the volumetric strain εv
and the mean effective stress p is more reasonably expressed with an
exponential function [29]
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where C n,t are the parameters fitting experimentally observed stress-
strain data; p0 is an isotropically initial stress and pa is the atmospheric
pressure.

Differentiating Eq. (4) yields
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Then, the bulk modulus K can be obtained from its definition
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Assuming that =K C n1/( )b t and = −n n11 , Eq. (6) is rewritten as
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2.2.2. Shear modulus G and coupling modulus J
It is noted that the shear modulus G in Eq. (3b) controls the shear

strain with respect to dq under dp = 0. Ideally, it should be determined
from the shear tests under the constant mean effective stress p, which
are seldom carried out in practice. Usually, conventional triaxial tests
are carried out to determine the model parameters. Therefore, before
giving the expression for G, we define first the shear modulus de-
termined from conventional triaxial tests as GTC.

Rockfill materials exhibit a nonlinear frictional behavior with an
asymptotic relationship between the deviatoric stress q and the shear
strain εs. Here, the −q εs relation measured in conventional triaxial
tests is supposed to be fitted with a hyperbolic function, expressed as

=
+

q ε
a bε

s

s (8)

where a and b are the constants whose values can be determined ex-
perimentally. To be more specific, they can be related to the initial
tangential shear modulus GTCi ( =a G1/ TCi) and the asymptotic value qult
of the deviatoric stress q where the curve −q εs approaches at infinite
strain ( =b q1/ ult), respectively.

It is commonly found that the asymptotic value of the deviatoric
stress q is larger than the shear failure strength qf by a small amount.
This would be expected, because the hyperbola remains below the
asymptote at all finite values of strain. The asymptotic value qult may be
related to the shear failure strength qf, however, by means of a factor Rf

as shown by

=q R qf f ult (9)

Under the triaxial condition, the shear modulus =G dq dε/TC s by the
definition, can be obtained by differentiating Eq. (8) and combining Eq.
(9):
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Experimental studies have shown that the initial tangential shear
modulus GTCi varies with the mean effective stress p. Referring to
Janbu’s study [30], it may be expressed as
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where KG is a material modulus, and n2 is the exponent determining the
rate of variation of GTCi with p. Both KG and n2 are dimensionless and
may be determined readily from the results of a series of triaxial tests by
plotting the values of GTCi against p on log-log scales and fitting a
straight line to the data.

In Eq. (10), the shear failure strength qf is usually related to the
mean effective stress p, which depends on the failure criterion. The
criterion of the Extended Mises type =q M pf f was adopted for the shear
yield and shear failure of soils in the Cam-clay model, and many other
models, where =M φ φ6 sin /(3 - sin )f under the triaxial condition (φ is
the peak friction angle). If the criterion of the Extended Mises type is
adopted, substituting Eq. (11) into Eq. (10) yields
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However, as exprimental evidence shows, the Extended Mises cri-
terion grossly overestimates strength in triaxial extension, and also
results in incorrect intermediate stress ratios in π plane. It is known that
the failure of soil can be reasonably explained by the SMP criterion
[31], which is written as
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where τSMP and σSMP are the shear and normal stresses on the SMP, and
I1, I2 and I3 are the first, second and third stress invariants.

In this study, we adopt the SMP criterion instead of the Extended
Mises criterion. To this end, the transformed stress tensor σ~ij proposed
by Yao et al. [11,12] is used, which can transform the SMP criterion
into an Extended Mises type criterion in the new stress transformed
stress space. The transformed stress tensor σ~ij is expressed as
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By using the transformed stress tensor σ~ij, the SMP criterion can be
expressed as

=q M p~ ~
f f (15)

Matsuoka et al. [32] introduced the SMP criterion into the Cam-clay
model by replacing the stress tensor σij with the transformed stress
tensor σ~ij. Similarly, the SMP criterion (Eq. (15)) is incorporated into the
shear modulus of Eq. (12) through σ~ij, leading to
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By considering =G dq dε/TC s, Eq. (3b) can be rewritten as
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Combining Eq. (3a) and Eq. (3b), one can obtain
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Assuming =ξ dq dp/ and =D dε dε/v s, we can derive the shear
modulus G and the coupling modulus J from Eqs. (17) and (18).
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Fig. 1 gives the typical stress-strain relation of granular materials
during shearing in a triaxial test. It demonstrates that the sample is
usually compressive at the beginning of shearing and gradually turns to
be dilative. The stress ratio η(=q/p) corresponding to the phase
transformation point from contraction to dilatation is denoted as M,
which can be related to the phase transformation friction angle ψ with

= −M ψ ψ6 sin /(3 sin ). Considering this typical stress-strain

characteristic and the microstructure change of granular materials, Liu
et al. [33] proposed a stress-dilatancy equation, expressed as
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where =η q p/ , and m is an experimentally fitting constant. Eq. (21) can
reasonably describe the volumetric change of granular materials from
the initial compression ( >dε 0v when < <η M0 ) to the positive dila-
tancy ( <dε 0v when <M η). It can be regarded as a general form of
several exsiting stress-dilatancy equations. For instance, when m = 1,
Eq. (21) is degenerated into the dilatancy equation as used in the
modified Cam-clay model. The first-order Taylor expansion of Eq. (21)
at =η M leads to a dilatancy equation as used in the generalized
plasticity model for sands, proposed by Pastor and Zienkiewicz [34].

Eqs. (7), (19) and (20) provide a straightforward way of obtaining
three moduli K, G and J from experimental data. In this nonlinear
constitutive model, the SMP criterion is incorporated in the shear
modulus GTC and therewith the moduli G and J to reflect the influence
of the intermediate principal stress. The coupling modulus J accounts
for the volumetric strain produced by an increment dq in deviatoric
(shear) stress, and also the shear strain produced by an increment dp in
mean effective stress. The dilatancy of coarse granular materials is
considered in the model by adopting a stress-dilatancy equation of Eq.
(21) in the moduli G and J. The great advantage of this model is its
simplicity. It is noted from the above derivation of the moduli that this
simple model does not deal with the mechanical behavior of granular
materials after their peak shear strengths. However, the proposed
model should be sufficient to be applied in the rockfill dam engineering
because most of rockfill dams operate under a relatively lower stress
level [35–38].

2.3. Nonlinearity of shear strength

Shear strengths of rockfill materials often exhibit nonlinearity under
different mean effective stresses, mainly resulting from particle
breakage. The strength nonlinearity can be described by the functional
relationship between the peak friction angle φ and the mean effective
stress p.
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where φ0 is the peak friction angle when the mean effective stress is
equal to the atmospheric pressure pa; φΔ represents the reduction
magnitude of the peak friction angle per unit increase of the order of
magnitude of the mean effective stress.

Similarly, it is assumed that the relationship between the internal
friction angle at the phase transformation point ψ and the mean effec-
tive stress p is described by
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where ψ0 is the internal friction angle at the phase transformation point
when =p pa; ψΔ is the change of the internal friction angle ψ when the
mean effective stress increases by one order of magnitude.

Normally, the above-mentioned friction angle parameters (φ0, φΔ ,
ψ0, ψΔ ) can be determined by triaxial compression tests.

2.4. Determination of model parameters

The model includes ten parameters of
K n K n R m φ φ ψ ψ, , , , , , , Δ , , Δb G f1 2 0 0 , which can be determined
by a series of conventional tests. The compression parameters (Kb, n1)
can be determined by an isotropic compression test through fitting

−ε pv curve, while other parameters can be calibrated from conven-
tional triaxial tests. The shear parameters (K n R, ,G f2 ) can be obtainedFig. 1. Typical stress-strain relationship of coarse granular materials.
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Fig. 2. Comparison between experimental and predicted results of triaxial tests on Tankeng CFRD materials: (a) Cushion; (b) Transition; (c) Rockfill I; (d) Gravel; (e)
Rockfill II; (f) Alluvium (Sand gravel).
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by fitting the curve −q εs of the drained tests under different confining
stresses, and the stress-dilatancy parameter (m) can be measured based
on the experimental −D η curve. The peak friction angle and the phase
transformation friction angle φ and ψ can be determined from the stress
ratios at the peak stress state and phase transformation state using

=M φ φ6 sin /(3 - sin )f and = −M ψ ψ6 sin /(3 sin ), respectively. The
friction angle parameters (φ0, φΔ , ψ0, ψΔ ) can be obtained by fitting the
curves −φ p and −ψ p.

2.5. Experimental verification

A series of drained triaxial tests have been conducted on the con-
struction materials and the site alluvium of the Tankeng CFRD that are
described in detail in Section 3.1. The triaxial test results in Fig. 2 de-
monstrate that the shearing dilatation is more significant under low
confining pressures compared to under high confining stresses. They
are simulated using the proposed model with the set of model para-
meters listed in Table 1. As shown in Fig. 2, the model responses are
broadly in good agreement with the experimental data, indicating the
performance of the proposed model with the simplification ( = =J J J1 2 )
and the stress-dilatancy equation proposed by Liu et al. [33].

3. Application

3.1. The Tankeng project

As an example, the proposed nonlinear constitutive model was ap-
plied in the FEM analysis of the Tankeng concrete-faced rockfill dam
(CFRD). The Tankeng CFRD of 162 m in height, is located on the middle
reaches of the Oujiang River, Zhejiang Province, China. The layout of
the dam is shown in Fig. 3. The dam crest is 505 m long and 12 m wide.
The upstream concrete face is composed of into 42 slabs. Each slab is
12 m wide and the adjacent slabs are waterproofed with vertical joints.
The slabs are connected to the toe slabs located on the abutments
through peripheral joints.

Fig. 4 shows the typical cross-section of the dam corresponding to
section I-I in the layout. The upstream and downstream slopes of the
dam are 1:1.4 and 1:1.55 (average), respectively. The thickness d of the
concrete face slab is 0.3 m at the top elevation of 167 m and varies
linearly with a function of = +d H0.3 0.0035 downwards the slope,
where H is the vertical distance to the top elevation of 167 m. Behind
the concrete face slab, a cushion zone with a horizontal width of 3.0 m
is placed, which is composed of sands and gravels with a maximum
grain size of 6 cm. Between the cushion zone and the main rockfill zone,
a 5.0 m horizontally wide transition zone with a maximum grain size of
30 cm is provided to prevent fine particles of the cushion zone from
entering the pores of the rockfill. The main dam body consists of rockfill
I, gravel and rockfill II zones. The rockfill I zone provides a support for

Table 1
The nonlinear model parameters for different materials of Tankeng CFRD.

Material Dry density (kN/m3) m φ0 φΔ ψ0 ψΔ Kb n1 KG n2 Rf

Cushion 22 0.75 57.0° 11.8° 43.7° 1.4° 129 0.33 1515 0.42 0.79
Transition 21.5 0.72 50.7° 11.7° 43.9° 1.2° 513 0.16 1452 0.38 0.63
Rockfill I 21.2 0.85 51.3° 12.2° 44.7° 1.2° 380 0.15 1288 0.46 0.65
Gravel 21.5 0.67 51.7° 10.2° 44.8° 1.7° 717 0.19 1099 0.48 0.71
Rockfill II 20.7 0.71 53.2° 12.5° 47.1° 1.7° 176 0.58 1369 0.31 0.63
Alluvium 20.2 0.86 52.8° 6.3° 46.2° 3.5° 126 0.19 821 0.44 0.89

Fig. 3. Layout of the Tankeng CFRD.
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hydrostatic loads transmitted from the cushion zone and transition
zone. The gravel zone is surrounded by rockfill I and II zones since it
has relatively lower shear strength. The dam foundation has 20–30 m
thick alluvium of sand gravels. The gradations of the dam construction
materials and the foundation alluvium are given in Fig. 5.

3.2. FE analysis model

Fig. 6 presents the FE model for the Tankeng dam considering the
construction and the first impounding sequence. It is noted that the FE
model contains the foundation alluvium and the bottom of the alluvium
layer is vertically restrained in the calculation. The construction stage
was simulated by 13 loading steps following exactly the construction
procedure of the project (1–11, 13–14 steps). The hydrostatic load was
applied on the upstream surface in 2 steps (12, 15 steps), in accordance

with the reservoir level records, to reflect the impact of the first im-
pounding and water level fluctuation during 2008–2012. In summary,
the three-dimensional FE model contains 7162 eight-node elements, 15
loading steps and six rockfill materials.

The rockfill materials of the Tanleng CFRD were described using the
proposed nonlinear model, and the model parameters are listed in
Table 1. The concrete face slab was described using the linear elastic
model with an elastic module of 30 GPa, Poisson’s ratio of 0.167 and
density of 25 kN/m3. The interface between the concrete face slab and
the cushion layer was described using Goodman elements and the
tangential stress-displacement relationship at the interface was char-
acterized by the Clough-Duncan model, the details of which were seen
in [39–41]. The parameters of the Clough-Duncan model K0, n, Rf and φ
adopted in the calculation are 3500, 0.56, 0.74 and 36°, respectively.
The vertical and peripheral joints were simulated using a pair of nodes
that can be combined into a single node due to compressive stress ap-
plication and separated into two independent nodes due to tensile stress
application.

In 3D FE analysis, the constitutive relation is usually expressed in
Voigt stress space, which has been given in Appendix A for the proposed
constitutive model. A incremental algorithm is used to solve non-linear
finite element equations and a symmetric successive over relaxation
(SSOR) method is used to solve finite element control equation in this
FE analysis.

3.3. Results and discussion

Fig. 7 shows the contours of the calculated dam body deformation at
the maximum cross section after the first impounding. It can be seen

Fig. 4. Typical cross section of Tankeng CFRD.

Fig. 5. Gradation curves of alluvium and dam construction materials.

Fig. 6. Construction stages and three-dimensional mesh of Tankeng CFRD.
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that the maximum settlement occurred nearly in half of the dam height
(Fig. 7a). The maximum settlement of 116 cm accounts for 0.72% of the
dam height, which is within the range as observed in most of CFRDs
[37]. Under the action of the water pressure on the upstream concrete
face slabs, the overall trend of the horizontal displacement is towards
the downstream with the maximum magnitude of 22 cm at the down-
stream (Fig. 7b). Fig. 8 presents the contours of the calculated concrete
face slab deflection after the first impounding. The maximum deflection
is 33 cm, occurring in the middle of the upstream face slabs. Reference
[37] presents the face slab deflection measured in the 87 case histories
with respect to dam heights. Statistical results show that the face slab
deflection in most cases is less than 0.40% of the dam height, and more
than half cases are less than 0.2% of the dam height. Very few cases that

were constructed using low-strength rockfills exhibit the face slab de-
flection values up to 0.6% of the dam height. The calculated face slab
deflection 33 cm of the Tangken CFRD accounts for 0.2% of the dam
height, within the range of the statistical results for most of CFRDs [37].
Fig. 9 compares the calculated dam settlement and the slab deflection
with the monitored data at the maximum cross-section after the first
impounding. The settlement at the monitoring point V3-2 was not
measured because the monitoring gauge had been damaged before the
completion of the dam. Anyway, it can be observed that both the cal-
culated settlements of the dam and the calculated deflection of the
concrete face slab agree basically with the monitored ones.

Fig. 10 compares the simulated settlement evolution at the mon-
itoring point V2-3 in the middle of the maximum cross section with the
monitored data. It demonstrates that the calculated settlement evolu-
tion at the point V2-3 agrees basically with the monitored one with a
significant increase during the construction and an insignificant in-
crease under the action of the water filling. As the creep deformation of
the rockfills was not taken into account in the calculation, the calcu-
lated settlement-time curve was slightly lower than the monitored one
in Fig. 10.

Fig. 11 shows the comparison of the calculated dam settlement with
the monitored data along the longitudinal section V-V after the first
impounding. The settlement values are presented in the form of frac-
tional numbers beside the monitoring points, in which the numerator
and the denominator denote the monitored values and the calculated
values, respectively. It can be seen that the calculated settlement at
each monitoring point (VC1 to VC8) is close to the monitored one. The
calculated maximum settlement occurs nearly in the middle of the dam
height at the maximum section. As we know, for the dam built directly
on rock foundations, the maximum settlement of the dam would occur
at nearly 2/3 dam height. In the calculated project, the dam was built
on an alluvium foundation as shown in Fig. 4. The weight of the dam
body and the water pressure will induce the settlement deformation of
the alluvium foundation, leading to the downward movement of the
location for the maximum settlement of the dam body. So, the max-
imum settlement of the dam body shown in Figs. 7(a) and 11 occur
nearly in the middle of the dam height, as reported in [42–44].

In this rockfill dam, the horizontal displacements on the down-
stream slope have been monitored with a relatively high accuracy. The
monitored horizontal displacements after the first impounding agree
roughly with the calculated ones, as shown in Fig. 12. The maximum
horizontal displacement occurred near the 2/3-height of the dam.
Along the dam height, the distribution of the horizontal displacements
on the downstream slope is similar to that of the deflections of the face
slabs.

In summary, both the calculated deformation of the dam body and
the deflection of the concrete face slabs agree roughly with the

Fig. 7. Contours of the calculated deformation of the dam body at the max-
imum section after the first impounding (unit: cm).

28
23

1813
 8

3

33

Fig. 8. Contours of the calculated concrete face slab deflection after the first
impounding (unit: cm).

Fig. 9. Comparison of the numerically calculated dam settlement and the slab deflection with the measurement at the maximum cross section after the first
impounding.
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monitored ones, indicating the rationality of the proposed nonlinear
constitutive model for rockfill materials.

4. Conclusions

(1) A nonlinear constitutive model for rockfill materials that can reflect
the coupling influence of the mean effective stress p and the de-
viatoric stress q on the deformation of rockfill materials was pro-
posed. The model is of simple form but can account for the dila-
tancy behavior, the strength nonlinearity of rockfill materials as
well as the influence of the intermediate principal stress. There are
10 parameters involved in the model, which can be determined by
conventional tests.

(2) The validity of this nonlinear constitutive model was verified by
modelling the triaxial tests on 6 kinds of rockfill materials used in

the Tankeng CFRD. This model was confirmed to be effective in
reproducing basic features of rockfill materials, such as volumetric
change due to dilatancy and a nonlinear frictional behavior.

(3) This model was applied in the 3D FE calculation for the Tankeng
CFRD. The calculated deformation of the dam body and the de-
flection of the concrete face slabs are in good agreement with the
in-situ measurements, indicating that the proposed model could
easily implemented in a 3D FE simulation and is able to capture the
main mechanical responses of rockfill materials in a rockfill dam.
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Fig. 10. Settlement–time curves at the monitoring point V2-3.

Fig. 11. Comparison of the calculated dam body settlement with the measurement along the longitudinal section V-V after the first impounding.

Fig. 12. Comparison of the calculated horizontal displacements with the monitored ones on the downstream slope after the first impounding.
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Appendix A

In FE calculation, the constitutive model established in p-q stress space should be expressed in Voigt stress space.
Eq. (1) is rewritten as

=dσ D σ dε( )ij ijkl mn kl (A.1)

where Dijkl is the inverse of Cijkl that are stress level dependent. Under the isotropic condition, Dijkl can be expressed as

= + + + + + + + +
+ + + + + +

+ + + +

D σ A δ δ A δ δ δ δ A σ δ A δ σ A δ σ δ σ δ σ
δ σ A δ σ σ A δ σ σ A δ σ σ δ σ σ δ σ σ
δ σ σ A σ σ A σ σ σ A σ σ σ A σ σ σ σ

( ) ( ) (
) (

)

ijkl mn ij kl ik jl jk il ij kl ij kl ik jl il jk jk il

jl ik ij km ml kl im mj ik jm ml il jm mk jk im ml

jl im mk ij kl ij km mi im mj kl im mj kn nl

1 2 3 4 5

6 7 8

9 10 11 12 (A.2)

where ⋯A A A, , ,1 2 12 are coefficients related to stress invariants, and δ is the Kronecker delta (when i = j, =δ 1ij ; when ≠i j, =δ 0ij ). It is assumed
that the coefficients A5 to A12 are related to higher-order stress invariants and their values equal zero. Then Eq. (A.2) can be simplified as

= + + + +D σ A δ δ A δ δ δ δ A σ δ A δ σ( ) ( )ijkl mn ij kl ik jl jk il ij kl ij kl1 2 3 4 (A.3)

Substituting Eq. (A.3) into Eq. (A.1) yields

= + + +dσ A δ dε A dε A σ dε A δ σ dε2ij ij kk ij ij kk ij kl kl1 2 3 4 (A.4)

Under the triaxial stress state, Eq. (A.4) can be expressed as

= + + + +
= + + + +

=

⎫

⎬
⎭

dσ A dε A dε A σ dε A σ dε σ dε
dσ A dε A dε A σ dε A σ dε σ dε

dσ dσ

2 ( 2 )
2 ( 2 )

kk kk

kk kk

11 1 2 11 3 11 4 11 11 22 22

22 1 2 22 3 22 4 11 11 22 22

33 22 (A.5)

and the increments of p, q, εv and εs can be written as

=
= −
= +

= −

⎫

⎬

⎪⎪

⎭
⎪
⎪

+dp
dq dσ dσ
dε dε dε

dε dε dε
2

( )

dσ dσ

v

s

( 2 )
3

11 33

11 33
2
3 11 33

11 33

(A.6)

Combining Eq. (A.5) and Eq. (A.6) yields

= + + + +

= +

⎫
⎬
⎭

( )dp A A pA pA dε A qdε

dq A qdε A dε3
v s

v s

1
2
3 2 3 4 4

3 2 (A.7)

The inverse expression of Eq. (3) can be written as

= −
= − +

⎫
⎬⎭

dp Kdε Jdε
dq Jdε Gdε

¯ ¯
¯ ¯

v s

v s (A.8)

where moduli K̄ , J̄ , Ḡ can be represented by K , J , G as follows

=

=

=

⎫

⎬

⎪⎪

⎭
⎪⎪

−

−

−

K K

G G

J

¯

¯

¯

J
J KG

J
J KG
KGJ

J KG

2
2

2
2

2 (A.9)

From Eqs. (A.7) and Eq. (A.8), coefficients A1–A4 can be obtained

= − +

=

= = −

⎫

⎬

⎪

⎭
⎪

A K G J

A

A A

¯ ¯ ¯p
q

G

J
q

1
2
9

2

2
¯
3

3 4
¯

(A.10)

Substituting Eq. (A.10) into Eq. (A.4) yields

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

+ − −dσ K G
p

q
J δ dε Gdε J

q
σ dε J

q
δ σ dε¯ 2

9
¯ 2 ¯ 2

3
¯ ¯ ¯

ij ij kk ij ij kk ij kl kl
(A.11)

Eq. (A.11) is the expression of stress-strain relationship in Voigt stress space, which can also be written in a matrix form

=dσ D dε{ } [ ]{ } (A.12)

which can be expanded as
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⎧

⎨

⎪
⎪

⎩

⎪
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⎪
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21 22 23 24 25 26
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41 42 43 44

51 52 53 55

61 62 63 66

11

22

33

12

23

31 (A.13)

where [D] is a symmetric stiffness matrix, and items in the matrix can be expressed as

= + = = + +
= + = = + +
= + = = + +

= = =

= = = = = =

= = = = = =

= = = = = =

⎫

⎬

⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪

−

−

−

D α α D D α α α
D α α D D α α α
D α α D D α α α

D D D

D D D D D D

D D D D D D

D D D D D D

2 ;
2 ;
2 ;

G

Jσ
q

Jσ
q

Jσ
q

11 1 3 12 21 2 3 4

22 1 4 23 32 2 4 5

33 1 5 31 13 2 3 5

44 55 66
¯
3

41 42 43 14 24 34
¯

51 52 53 15 25 35
¯

61 62 63 16 26 36
¯

12

23

31
(A.14)

in which

= +

= −

= + −

= + −

= + −

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

α K G

α K G

α σ σ σ

α σ σ σ

α σ σ σ

¯ ¯

¯ ¯

( 2 )

( 2 )

( 2 )

J
q

J
q

J
q

1
4
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2
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3
¯

3 22 33 11

4
¯

3 11 33 22

5
¯

3 22 11 33 (A.15)
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