
RESEARCH PAPER

Micromechanical modeling of particle breakage of granular materials
in the framework of thermomechanics

Chaomin Shen1 • Sihong Liu1 • Liujiang Wang1 • Yishu Wang1

Received: 29 August 2017 / Accepted: 5 July 2018
� Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The particle breakage of granular materials under compression is a phenomenon of great importance. In this paper, a

micromechanically based model for the compression of crushable granular materials is developed in the framework of

thermomechanics. Both the internal and dissipative energies in the model are derived using the micro–macro volume

averaging approach to ensure that all parameters involved have concrete physical meanings. The particle breakage is

quantified by the change of the maximum particle size, the size polydispersity and the fractal dimension of the gradation.

Compared to other breakage models, there is a major difference that highlights the novelty of the proposed model: neither

the ultimate particle size distribution, nor the evolution path of the gradation is predefined in the model. The initiation,

evolution and the attenuation of the breakage can be determined by the maximum dissipation principle using thermo-

mechanics and micromechanics. Finally, it is demonstrated that the proposed model can predict the stress dependence of

the elastic bulk modulus, the size dependence of the yielding stress and the elastic–plastic-pseudoelastic phase transition of

granular materials.
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1 Introduction

One of the today’s great challenges in geomechanics is to

understand the role of particle breakage in the mechanical

behavior of crushable granular materials like sands and

rockfills. Particle breakage may take place not only under

high stress conditions, but also under low stress conditions

for weak-grained crushable granular materials such as

carbonate sands or decomposed granites. In geotechnical

engineering practices, particle breakage gives rise to vari-

ous problems, such as the piles creep in sand [32], the

additional settlement of high rockfill dams [2] and the

nonlinear strength envelope of rail ballast [17]. It is also of

prime importance in the critical state constitutive theories

[1, 16, 56]. For example, a key question in the mechanics

of sands is what role particle breakage plays in the location

of the critical state line in the plane of the void ratio against

the logarithm of mean effective stress [36]. For these rea-

sons, particle breakage has increasingly interested many

technological and theoretical fields of research.

A good starting point to investigate particle breakage of

granular materials is often under the condition of com-

pression. Extensive experiments indicate that the particle

breakage of granular materials under compression is

influenced by many factors, such as the magnitude of the

applied stress [45, 47, 59], the particle strength [26, 30], the

particle size [25, 31, 39, 41], the particle size distribution

(PSD) [30, 31] and the initial compactness of the material

[25, 58]. Consequently, the forms of the compression curve

(i.e., the relationship between the void ratio and the

effective stress) of granular materials may differ [42] and

several models have been proposed to describe the com-

pression curves [5, 47, 53]. In general, three phases have

been generally identified in the compression curves: vol-

ume decrease at low stresses, more intense compression

due to particle breakage under higher stresses and the

pseudoelastic behavior at very high stresses [25].

Apart from laboratory tests, the discrete element method

(DEM) is also an effective technique to study the particle
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breakage. It has been proven to be one powerful tool in

capturing the micromechanical behaviors of crushable

granular materials [33, 34, 52]. Two methods are generally

used to simulate particle breakage by DEM: bonding

method and splitting method. The bonding method was

pioneered by Robertson [48], who explored the procedure

of modeling crushable numerical grains created by bonding

elementary balls (also called agglomerates). Cheng et al.

[11] verified the Weibull statistics of the crushing strength

of the agglomerates and discussed the role of particle

breakage in the plasticity of granular materials. Further

study on the energy balances during particle breakage by

Bolton et al. [8] indicated that a typical particle breakage

process is accompanied with the change of three energies:

internal energy (elastic energy), energy dissipation due to

particle breakage and the energy dissipation associated

with frictional sliding and rolling triggered by the creation

of new degrees of freedom among the breaking fragments.

DEM simulations using agglomerates are also capable of

considering the influence of particle shape and variability

[3, 8, 11, 13] of crushable materials. Despite the energetic

insight provided, the bonding model is limited in the

computational efficiency, especially for polydisperse

granular materials. The splitting method for the DEM

simulation of particle breakage, which involves modeling

grains with single particles and replacing them with smaller

fragments, has also been used in the literature to simulate

multigenerational particle breakage and to enhance the

computational efficiency [4, 6, 9, 12, 40, 54]. An important

application of this approach is to observe the evolution of

the PSD of crushable granular materials under sufficiently

large stress (e.g., [6, 12]). However, the choice of the

breakage criterion and the breakage configuration in the

splitting method is still a matter of debate. In addition, the

energy conservation is not guaranteed in this method.

Recently, a variety of new techniques including the com-

bined FDEM [35] and the random virtual crack DEM [62]

have been adopted to study more sophisticated problems.

To bridge the laboratory results and the micromechan-

ical behaviors observed in DEM simulations, two repre-

sentative theories have been proposed. The clastic

mechanics was proposed by McDowell and Bolton

[7, 39, 41], who quantified the survival probability of

particles under compression with a modified Weibull dis-

tribution. They further formulated a new work equation

that includes the energy dissipation due to grain crushing to

provide a physical insight into the hardening parameter in

critical state soil models. Einav [19–21] developed the

theory of breakage mechanics using thermomechanics, in

which the internal energy was related to the change of the

PSD. By assuming the existence of an ultimate PSD for

crushable granular materials, he established an elastic–

plastic-breakage model where the evolution of the void

ratio as well as the PSD against the loading stress was

considered. Both the clastic mechanics and the breakage

mechanics provided remarkable insights into the physics of

compression of crushable granular materials. However, as

some empirical results had to be adopted in these models,

the underlying physics of the particle breakage are not

totally unveiled.

In this context, the main purpose of this study is to

reveal the physics of particle breakage during compression.

Compared with the existing models, the emphasis in the

present work is mainly placed on: (1) understanding the

driving thermodynamic mechanisms that control the

yielding stress and evolution path of the PSD of crushable

granular materials; (2) developing a model that predicts,

rather than depicts the influence of particle breakage. For

the sake of simplicity, the investigation is limited to the

isotropic compression of frictionless spherical granular

materials. An elastic-breakage model for the compression

of granular materials is derived on micromechanics and the

fundamental laws of thermomechanics. The capacity of the

model is evaluated in comparison with experimental data

and DEM simulations in the literature.

2 Outline of the thermomechanical
modeling scheme

The general thermodynamics statement of a rate-indepen-

dent mechanical procedure can be expressed as [19]

_W ¼ _uþ _U; _U� 0 ð1Þ

where W is the work input per unit volume into the

mechanical system; u and U are the internal energy density

and the dissipative energy density, respectively. The dot

symbol over the variables denotes the time differential q/qt.
For spherical frictionless granular systems under the iso-

tropic compression, the general forms of u and _U are

defined as

u ¼ u rm;Cð Þ; _U ¼ _U C; _C
� �

ð2Þ

where rm is the hydrostatic stress; C is designated as a

generalized indicator of particle breakage and its form will

be specified later. In general, particle breakage results in

the rearrangement of particles, which may be accompanied

with frictional dissipation. However, as Einav [19] pointed

out, the plastic dissipation during the compression of

crushable granular materials is secondary to the dissipation

owning to breakage. Therefore, developing models that

account for the breakage, without considering plastic

straining, can be a good starting point before proceeding a

full elastic–plastic-breakage analysis. Hence, this study
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only focuses on the elastic-breakage process, which means

_ev ¼ _ee
v. As a result, the power input _W can be rewritten as:

_W ¼ rm _ev ¼ rm _rm

�
Ke

B ð3Þ

where ev is the volumetric strain and KB
e is the elastic bulk

modulus.

Substituting Eqs. (3) and (2) into (1) yields

rm

�
Ke

B�
ou

orm

� �
_rm ¼ ou

oC
_Cþ _U ð4Þ

For a reversible thermomechanical process, i.e., a process

without particle breakage, Eq. (4) leads to

rm

�
Ke

B�
ou

orm

¼ 0 ð5Þ

As Eq. (4) also holds for the particle breakage process, by

comparing Eq. (4) with Eq. (5), we can also obtain

ou

oC
_Cþ _U¼0 ð6Þ

The second law of thermodynamics requires that the dis-

sipation _U should be nonnegative. Therefore, it is obtained

from Eq. (6) that ou
oC

_C� 0; which implies that the particle

breakage always tends to reduce the internal energy in the

granular system. It is noted that the second law of ther-

modynamics requires only the non-negativity of the dissi-

pation, which is obviously insufficient to determine the

evolution path of energy densities. Thus, more strict con-

ditions are required to determine the evolution of particle

breakage.

In order to establish a model for the compression of

crushable granular materials in the thermomechanical

framework, one should address the following three ques-

tions: (1) how to determine the internal and dissipative

energy densities? (2) how to specify the generalized indi-

cator of particle breakage C? (3) how to determine the

evolution of the particle breakage? In what follows, these

three questions will be answered successively: the energy

densities are formulated using micromechanics in Sect. 3;

the particle breakage indicator is proposed in Sect. 4; and

the evolution law of the particle breakage is derived and a

complete elastic-breakage model is established in Sect. 5.

3 Micro–macro formulation of energy
densities

Regarding a possible method to determine the energy

densities of crushable granular materials under isotropic

compression, the micromechanical approach is potentially

attractive because the micromechanics is capable of cap-

turing the mechanism at the microscopic (particulate) scale

and homogenize it to the macroscopic scale. In this section,

the internal and the dissipative energy densities at the

particulate scale are firstly formulated in terms of its con-

tact information in Sect. 3.1. Then, the particulate results in

the total volume are averaged to the macroscopic scale in

Sect. 3.2.

3.1 Particulate scale

First of all, it is defined that the gradation of the granular

material is described by a particle number distribution

function p(r), with
R rmax

rmin
p rð Þdr ¼ 1. The number of parti-

cles with radii ranging from r to r ? dr is thus Np(r)dr,

where N is the total particle number in the granular system.

3.1.1 Internal energy density

In the case of one single spherical particle located within a

granular media, it has been proven [29] that the micro-

scopic stress can be expressed in terms of the contact forces

fi
c and their corresponding branch vectors lj

c, given by

rp
ij ¼

1

Vp

X

c2Vp

f c
i l

c
j ð7Þ

where the superscript c denotes the contacts and Vp is the

volume of the particle. For a spherical particle, we have

Vp = 4/3pr3 and the norm of the branch vector is |lj
c| = r.

When the particle is compressed under a hydrostatic

pressure, the mean stress of the particle, denoted as rm
p , is

calculated from Eq. (7) as

rp
m ¼ 1

3
rp
ii ¼

1

4pr3

X

c2Vp

f c
i l

c
i ð8Þ

For a frictionless granular system, the directions of the

contact forces coincide with their corresponding branch

vectors. Thus, Eq. (8) can be simplified as

rp
m ¼ f rð ÞC rð Þ

4pr2
ð9Þ

where r is the radius of the spherical particle, f is the

average of the magnitudes of the contact forces exerted on

the particle, and C is the coordination number. Here, both

of them are regarded as functions of the particle radius.

For two frictionless elastic spheres of radius r and r0

pressed together under a load f, Hertz [27] established the

force–displacement relation of the contact between them,

expressed as

D3
t ¼ X3f 2 1

r
þ 1

r0

� �
ð10Þ

where Dt is the total displacement that the two spheres

approach each other. X is a material parameter given by
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X3 ¼ 9

4

1 � m2

pE

� �
ð11Þ

Equation (10) can be divided into two additive terms that

are associated with the two contacting spheres, respec-

tively. For the sphere with the radius r, its contribution to

the total displacement is

D ¼ Xr�1=3f 2=3 ð12Þ

By adopting Eq. (12), the elastic energy stored within the

particle with the radius r for one single contact can be

calculated

Ec ¼
Z D

0

f Dð ÞdD ¼ 2

5
Xr�1=3f 5=3 ð13Þ

Consequently, the total elastic energy density stored within

the particle can be obtained via summation of Eq. (13)

up ¼ 1

Vp

X

c2Vp

Ec ð14Þ

As the average contact force and the coordination number

of the particle have been regarded as functions of the

particle radius, the total elastic energy density stored within

the particle can be rewritten by combining Eqs. (13) and

(14)

up rð Þ ¼ 2

5Vp

Xr�1=3 f rð Þ½ �5=3
C rð Þ: ð15Þ

The coordination number C(r) in Eq. (15) for a particle

with radius r is related to the sizes of its surrounding

particles in the granular system. It is estimated in this study

by mapping the neighboring particles onto the surface of

the reference particle so that the ‘‘shaded area’’ is consid-

ered occupied. Given that the surface area of a regularly

shaped particle is calculable, the maximum coordination

number can be estimated by calculating the number of

‘‘occupations’’ available. This idea was first introduced by

Ouchiyama and Tanaka [46] and was verified in the study

on the trace of the fabric tensor in granular systems with

narrow-size distributions in [37].

In this study, we extend this idea to a polydisperse

granular system where the surrounding particles are of

different sizes (see Fig. 1).

R is the radius of a particle that surrounds the reference

particle with radius r. S r;Rð Þ denotes the area of the sur-

face ‘‘shaded’’ by the surrounding particle, which can be

calculated as

S r;Rð Þ ¼ 2pr2 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rr þ r2

r þ Rð Þ2

s !

ð16Þ

The radii R of the particles surrounding the reference

particle should satisfy the same distribution as the PSD of

the granular system. In this case, the mathematical

expectation for one ‘‘shaded’’ area S rð Þ is

SðrÞ ¼ 2pr2

Z rmax

rmin

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rr þ r2

r þ Rð Þ2

s !

pðRÞdR ð17Þ

Taking into account the total surface area of the reference

particle, one can obtain its coordination number

CðrÞ ¼ 4pr2

csSðrÞ
¼ 2

cs

R rmax

rmin
1 �

ffiffiffiffiffiffiffiffiffiffiffi
2Rrþr2

rþRð Þ2

q� �
pðRÞdR

ð18Þ

where cs was defined as the linear capacity that describes

the total fraction of the ‘‘shaded’’ surface [51]. The study in

[51] suggested that cs depends on the polydispersity of the

granular system: it can be regarded as a constant in nar-

rowly distributed granular systems, while it varies with the

reference particle size in highly polydisperse granular

systems. For the sake of simplicity, the variation of the

linear capacity in highly polydisperse granular systems is

not considered in this study.

By now, the stress and the internal energy density of one

single particle in a granular system are related to the

properties of its contacts via Eqs. (9) and (15), in which the

coordination number C(r) is estimated by Eq. (18), but the

contact force f(r) has not yet been determined and will be

discussed later.

3.1.2 Dissipative energy density

At the microscopic level, the dissipative mechanism of

granular materials under external compression may be

interpreted as the result of the breakage of the particles and

the relative frictional sliding or spin among particles [19].

S r,R)

r

R

Fig. 1 Schematic representation of a particle with radius r in contact

with particles of different radii denoted by R
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As this study focuses on frictionless spherical particles, the

dissipation due to the frictional sliding or spin is ignored.

The energy dissipation due to the particle breakage in a

granular system is quantified by introducing the concept of

strain energy release rate Gf in fracture mechanics [23]

_Up ¼ Gf
_Sp ð19Þ

where Up denotes the dissipative energy for a single par-

ticle; Sp is the surface area per unit volume and equals 3/

r for a spherical particle.

Equation (19) implies that the dissipative energy due to

the particle breakage is proportional to the creation of the

surface area. Similar concept that relates the breakage

dissipation to the creation of the surface area was adopted

to model the particle breakage in [41]. This hypothesis can

also be supported by the results of triaxial compression

tests on decomposed granite soil by Miura and Ohara [44].

3.2 Volume averaging

The purpose of this subsection is to determine both the

internal and the dissipative energy densities of a granular

system, so that they can be related to the microscopic

quantities.

The homogenization approach chosen in this study is to

take the averages of the microscopic quantities weighted by

the volume of each particle, which can be expressed as

Xh i ¼ 1

V

X

p2V
XpVp ð20Þ

where hXi denotes the average of the quantity X; Xp is the

quantity of X pre-averaged at the single particle scale; V is

the volume of the granular specimen that includes both the

granular solids and the voids. Introducing the PSD function

p(r) in Eq. (20), we can rewrite Eq. (20) in an integral form

Xh i ¼ XpVp

1 þ eð ÞVp

ð21Þ

where e is the void ratio and . . . denotes
R rmax

rmin
. . .p rð Þdr. For

the sake of simplicity, we use the notation X instead of hXi
in the following if there is no ambiguity.

3.2.1 Internal energy density

According to the volume averaging approach in Eq. (21),

we can obtain the averaged hydrostatic stress rm of the

granular system by integrating Eq. (9)

rm ¼ C rð Þf rð Þr
4p 1 þ eð Þr3

ð22Þ

Similarly, we can obtain the internal energy density for the

granular system by integrating Eq. (15)

u ¼ 3X
10p 1 þ eð Þ

r�1=3 f rð Þ½ �5=3
C rð Þ

r3
ð23Þ

where the coordination number C(r) is estimated using

Eq. (18). We recall that the contact force f(r) is not yet

determined.

There are some empirical relationships in the literature

for the estimation of the contact forces in the granular

media. However, adopting these empirical relationships

will inevitably involve parameters that have no physical

meanings. Here, an alternative method is adopted to esti-

mate the contact force. For the sake of simplicity, we

ignore the heterogeneity of the microscopic stress rp
m,

which means

rp
m ¼ C rð Þf rð Þ

4pr2
¼ const:; 8r 2 rmin; rmax½ � ð24Þ

The above condition suggests that rp
m is independent of the

particle size r. Adopting this condition and averaging the

rp
m to the total volume yields

rm ¼ rp
m

1 þ e
ð25Þ

Substituting Eq. (24) into Eq. (25) eventually leads to

C rð Þf rð Þ ¼ 4p 1 þ eð Þrmr
2 ð26Þ

Equation (26) shows that for a given stress, the contact

force in a polydisperse granular sample can be related to

the coordination number, which has been estimated pre-

viously in Eq. (18). However, before adopting Eq. (26), we

would now like to examine the validity of the hypothesis in

Eq. (24). For this purpose, the isotropic compression test

on a granular material is simulated using the DEM software

PFC3d developed by Itasca Consulting Group [24]. The

DEM specimen consists of 5000 frictionless spherical

particles with five different sizes. The elastic contact

modulus Ec of particles is chosen to be 1 9 108 Pa and the

particle–wall friction coefficient is set to be zero to mini-

mize the boundary effect. In the simulation, the specimen is

hydrostatically compressed under a pressure of 50 kPa.

After the compression, the void ratio e of the specimen

equals 0.592.

Figure 2 gives the DEM simulation results at the

hydrostatic pressure of 50 kPa, in which Fig. 2a is the force

chain distribution and Fig. 2b plots the relationship

between f(r)C(r) and 4p(1 ? e)r2. It is clearly shown in

Fig. 2b that there exists a proportional relationship between

f(r)C(r) and 4p(1 ? e)r2. The slope k of the line that fits

this relationship equals 46.7 kPa, which basically agrees

with the applied hydrostatic pressure of 50 kPa. That is to

say, despite the heterogeneous nature of granular materials

[43], the variation of the particulate stress rp
m with the

Acta Geotechnica

123



particle size r is not significant. Thus, we consider that

Eq. (26) is valid for polydisperse granular materials.

Substituting Eq. (26) into Eq. (23), we obtain the

internal energy density of a granular system

u ¼ 4p 1 þ eð Þ½ �5=3 3X
10p 1 þ eð Þ r

5=3
m

r3= C rð Þ½ �2=3

r3
: ð27Þ

3.2.2 Dissipative energy density

For a spherical particle, the volume Vp and the surface area

per unit volume Sp are 4pr3/3 and 3/r, respectively. Com-

bining Eqs. (19) and (21), we can obtain the dissipation

energy density rate due to the particle breakage in a

granular specimen of spherical particles

_U ¼ Gf
_S ¼ 3

1 þ e
Gf

o r2
.
r3

� 	

ot
: ð28Þ

4 Quantification of particle breakage

4.1 Limitations of the relative breakage indexes

The degradation of granular materials can be characterized

by the evolution of the PSD. Many indexes have been

proposed to quantify the particle breakage [26, 30, 31, 38],

of which Hardin’s relative breakage index Br [26] is the

most famous. In Hardin’s Br, it was assumed that all par-

ticles would be eventually crushed to the extent that no

particles remain larger than 0.074 mm. However, this

assumption contradicts the growing understanding that the

ultimate PSD of a crushable granular material under suf-

ficiently large pressure will tend toward a self-similar

distribution [19, 39, 41]. For this reason, Einav [19] sug-

gested the use of an arbitrary fractal distribution as the

ultimate PSD to modify the Hardin’s Br. Both the relative

breakage indexes proposed by Hardin and Einav can be

written in a general form

C ¼ L C0;Cu;Brð Þ ð29Þ

where C, C0 and Cu denote the current, initial and ultimate

PSDs, respectively; Br is the relative breakage index;

L denotes a linear function. The advantage of Eq. (29) is

that the current PSD can be quantified by a single scalar,

i.e., the breakage index Br, provided that the initial and

ultimate PSDs are known. However, these definitions are

limited because of the two following reasons:

1. The existence of a unique ultimate PSD is not clear.

Based on the results of ring shear tests on a carbonate

sand by Coop et al. [16], Einav [19] suggested the use

of a fractal distribution with the fractal dimension of

2.59 as the ultimate PSD. This suggestion agreed

basically with the study of Sammis et al. [50], who

argued that the ultimate PSD should have a fractal

dimension of 2.58 after the analysis of the fractal

dimension of undisturbed fault gouges. However, the

fractal dimension of the Apollonian packing, which is

widely considered to be the idealized ultimate packing,

is slightly smaller (D = 2.47). In addition, the ultimate

fractal dimension for coarse-grained materials may be

greater than 2.6. For example, Du et al. [18] conducted

compaction tests on a coarse-grained soil and found

that the fractal dimension of the PSD was greater than

2.8; Wu et al. [57] statistically analyzed the fractal

dimensions of a large number of rockfill materials in

dams and found that most of them are greater than 2.6.

In this context, it is doubtful whether there exists a

unique ultimate PSD for an arbitrary crushable gran-

ular material under compression.

2. The influence of the PSD is not considered. The

particle size has a great influence on the mechanical

0

2
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6

8

10

k=46.7kPa

0 5 10 15 20

 ( )π −+ ×2 5 24 1 : 10 me r
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N
f
r
C

r

(a) (b)

Fig. 2 DEM simulation verification of the hypothesis of Eq. (24): a force chains distribution, b f(r)C(r) against 4p(1 ? e)r2
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behaviors of granular materials. For example, a

uniform granular material composed of big particles

presents more crushing than one composed of small

particles with the same material properties [25, 26, 31].

As the relative breakage indexes are dimensionless, the

effect of the PSD cannot be considered.

4.2 Indicator of particle breakage

In this study, instead of using a relative breakage index, we

simply characterize the particle breakage by quantifying

the change of the cumulated mass distribution (CMD). The

following function is adopted to describe an arbitrary CMD

M L\rð Þ
MT

¼ K3�D � k3�D

K3�D � 1
ð30Þ

where M(L\r) is the mass of particles with radius smaller

than r; MT is the total mass of the granular system; k ¼
r=rmax and K ¼ rmin=rmax, in which r, rmax and rmin are the

particle radius r, the maximum radius and minimum radius,

respectively; D is a constant parameter. If rmin tends toward

zero, the CMD becomes a fractal distribution and the

parameter D is the fractal dimension of the CMD

[41, 50, 55]. Figure 3 presents three typical CMDs based

on Eq. (30) both in semi-log axes (Fig. 3a) and in log–log

axes (Fig. 3b). It can be seen that these curves in Fig. 3b

can be approximated by line segments. The determination

of these line segments requires three characteristics: the

particle size span, the maximum particle size and the slope

of the CMD curve in log–log axes, which correspond to K,

rmax and 3 - D, respectively.

Therefore, the indicator of particle breakage C in Eq. (2)

can be quantified by the evolution of the three parameters

(K, rmax and D). For the convenience’s sake, C is written in

the vectorial form

Ci ¼ rmax;K;Dð Þ i ¼ 1; 2; 3 ð31Þ

We remark that using Eq. (30) to describe the PSD of soils

undergoing substantial crushing is not novel. However,

Eq. (30) is rarely used to describe the amount of particle

breakage because it does not include a predefined evolution

path for the breakage. Thus, developing a breakage model

using Eq. (30) requires better understanding of the physics

of particle breakage.

For spherical particles with the uniform density, one can

further obtain the particle number distribution function p(r)

from Eq. (30) (see ‘‘Appendix’’)

p rð Þ ¼ �D

rmax 1 � K�D
� � k�1�D: ð32Þ

5 Complete elastic-breakage model

5.1 Model formulation

By now, we have established the overall thermomechanical

framework for the isotropic compression of crushable

granular materials. Micromechanically based expressions

for the energy densities of frictionless granular materials

under isotropic compression have been formulated. In

addition, we have also proposed the function to describe an

arbitrary PSD and the indicator to quantify particle

breakage. In what follows, we will establish an elastic-

breakage compression model, where emphasis is placed on

determining the evolution of the particle breakage.

(a) (b)

Fig. 3 Three typical CMDs of granular soils in: a semi-logarithmic axes, b double logarithmic axes
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5.1.1 Energy densities

Although the internal and frictional energy densities are

formulated in Eqs. (27) and (28), the PSD was not specified

in the two equations. By substituting Eqs. (18) and (32)

into Eq. (27), we can rewrite the internal energy density

with specified PSD

u ¼ Hr5=3
m g K;Dð Þ ð33Þ

where H depends on the material properties of particles

and the compactness of the granular system, given by

H ¼ 6

5

ffiffiffi
4

3
p

X pcsð Þ2=3
1 þ eð Þ2=3 ð34Þ

H is given as follows

g K;Dð Þ ¼

�D
1�K�D

� 	2=3R 1

K k2�D
R 1

K 1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
2k0kþk2

kþk0ð Þ2

r� �
k0�1�Ddk0

� �2=3

dk

R 1

K k2�Ddk

ð35Þ

Similarly, the rate of the dissipative energy density with

specified PSD is obtained by combining Eqs. (28) and (32)

_U ¼ Gf

1 þ e
_S rmax;K;D
� �

ð36Þ

where S is given by

S ¼ 3
3 � D

2 � D

1 � K2�D

1 � K3�D

1

rmax

ð37Þ

It is noted from Eqs. (33)–(37) that the internal energy

density is independent of the maximum particle size rmax,

while the rate of the dissipative energy density is propor-

tional to 1/rmax.

5.1.2 Elastic compression

Combing Eqs. (5) and (33), we obtain the expression for

the elastic bulk modulus

Ke
B ¼ 3

5Hg
r1=3

m ð38Þ

As the elastic bulk modulus KB
e can be related to the void

ratio e according to its definition, Eq. (38) can also be

rewritten in the following differential form

� de

1 þ e
¼ 5

3
Hgr�1=3

m drm ð39Þ

5.1.3 Evolution of particle breakage

We term vi as the ‘‘dissipative breakage energy gradient’’

that describes the energy releasing due to per unit of the

particle breakage indicator C, and �vi the ‘‘breakage energy

gradient’’ describing the energy dissipated due to per unit

of particle breakage indicator, which are defined as

vi ¼
o _U

o _Ci

; �vi ¼
ou

oCi

ð40Þ

The rate of the dissipative energy density given in

Eqs. (36) and (37) indicates that for a rate-independent

material, the dissipation rate is a homogenous first-order

function in the breakage rate _C. In other words, the mag-

nitude of dissipated energy rate must be directly propor-

tional to the magnitude of particle breakage rate. The

Euler’s theorem for a homogenous function gives

o _U

o _C
_C¼ _U ð41Þ

Substituting Eqs. (40) and (41) into Eq. (6), one can

rewrite the energy conservation equation as

vi þ �við Þ _Ci ¼ 0 ð42Þ

It is noted that unlike the scalar relative breakage indexes,

the breakage indicator here _C is a vector with three degrees

of freedom: rmax, K and D. As a result, the choice of the

breakage indicator with more than one degrees of freedom

here may make a significant difference in Eq. (42): Since _C
is a vector, Eq. (42) only implies that vi þ �við Þ is orthog-

onal to _Ci. Hence, additional information is needed to

determine the evolution of the breakage. However, Ziegler

[63] argued that a much stronger statement vi þ �við Þ ¼ 0

can be made based on the hypothesis of maximum dissi-

pation. Although Ziegler’s condition is debatable, it is

sufficiently wide to provide realistic descriptions of many

materials, including some that involve dissipation which

depends on the applied pressure and (in the terminology of

plasticity theory) non-associated flow [28]. Here, we adopt

Ziegler’s condition and then Eq. (42) becomes

vi þ �við Þ ¼ 0 ð43Þ

With the Ziegler’s condition (maximum dissipation prin-

ciple), the evolution path of the PSD can be determined.

Noting that the internal energy density is size-independent,

i.e., qu/qrmax = 0, we can derive from Eq. (43) that

o _U
�
o _rmax ¼ 0. This result implies that although rmax is

allowed to evolve in the definition of the breakage indicator

Ci during particle breakage, the maximum dissipation

principle requires it to remain unchanged. The invariance

of rmax can be supported by the results of many experi-

mental results of compression of crushable granular
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materials. For instance, Fig. 4 shows the high-pressure

compression tests on Black beauty slag by Hagerty et al.

[25]. Although sands underwent substantial crushing dur-

ing the test, as observed from the evolution of the PSD, the

maximum particle size remain almost unchanged. This

result also explains why not particles are crushed to the

extent that no particles remain larger than a cut-off size

(0.074 mm), as was assumed by Hardin [26]. As rmax

remains constant during breakage, the particle breakage

indicator Ci is degenerated into

Ci ¼ K;Dð Þ ð44Þ

The roles of the particle breakage rate _Ci and the dissipative

particle breakage gradient vi can be interchanged through a

Legendre transformation, as was discussed by Collin and

Houlsby [14]. As the dissipation is homogenous and first-

order in _Ci, the degenerate special case of the Legendre

transformation leads to a function of vi. Collin and Houlsby

[14] argued that as this function is identically zero, it is none

other than the yield function. Thus, from Eqs. (36), (37) and

(43), we can write the yield function yB(vi) as

kByB � Fivi � Gf ¼ 0 ð45Þ

where for convenience, we designate Fi = (1 ? e)/(qS/qCi)

and kB is a nonnegative multiplier.

The Legendre transformation of Eq. (45) leads to the

flow rule

_Ci ¼ kB

oyB

ovi
¼ kBFi ð46Þ

Differentiating Eq. (45) yields

Fi _vi þ
oFi

oCj

_Cjvi ¼ 0 ð47Þ

Combining Eqs. (40) and (43), we can obtain

vi ¼ ��vi ¼ � ou

oCi

ð48Þ

Since the internal energy is a function of the stress and the

PSD, denoted as u(rm, Ci), differentiating Eq. (48) yields

_vi ¼ � o2u

oCioCj

_Cj �
o2u

oCiorm

_rm ð49Þ

Consequently, one can obtain the multiplier kB by substi-

tuting Eqs. (46) and (49) into Eq. (47)

kB ¼ �
Fi

o2u

oCiorm

_rm

Fi

o2u

oCioCj

Fj þ
ou

oCi

oFi

oBj

Fj

ð50Þ

During particle breakage, the stress–strain relation for

isotropic compression of granular materials can also be

described using Eq. (39) because the plastic strain is not

considered in this study, as mentioned previously. How-

ever, in contrast to the elastic compression where the

parameter g(K, D) is constant, the particle breakage stage

is accompanied by the evolution of g(K, D). Thus, the

stress–strain relation during particle breakage stage should

be calculated by considering the evolution of g(K, D).

5.1.4 Summary of the model

The complete elastic-breakage model for the compression

of crushable granular materials is summarized in Table 1.

Although this model seems more complex compared with

the existing breakage theories (e.g., Einav [19–22],

Mcdowell and Bolton [7, 39, 41]), it contains only three

basic material parameters (Young’s modulus E, Poisson’s

ratio m and the strain energy release rate Gf) of particles and

one fabric related parameter (the linear capacity cs).

Moreover, as the model is derived purely on the basis of

the micro–macro averaging and the laws of thermody-

namics without any empirical relations, it predicts, rather

than depicts the behavior of particle breakage.

5.2 Model performance

5.2.1 Elastic compression stage

The model prediction for the elastic stage in comparison

with the experimental data from [47] is illustrated in Fig. 5.

The bulk modulus KB of two different sands (bioclastic

calcareous and ground feldspar) is plotted against the

effective stress r0 in log–log axes, where both KB and r0 are

normalized by the atmosphere pressure pa. The relationship

between KB/pa and r0/pa depicted in Fig. 5 shows an

apparent change of the trend at the pressure of around

Maximum particle size 

remains constant.

Conceptual ultimate PSD 

    assumed by Hardin

20.7MPa
41.4MPa
62.1MPa
103Mpa
345Mpa
517Mpa
689Mpa

Fig. 4 Evolution of PSDs for Black beauty slag under high

compressive pressure by Hagerty et al. [25]
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6 MPa, indicating the initiation of the particle breakage.

The straight line in Fig. 5 is the theoretical prediction of

the elastic compression (before 6 MPa) using Eq. (38). As

implied by Eq. (38), the bulk modulus of for the elastic

compression is proportional to rm
1/3, which should corre-

sponds to a straight line with a slope of 1/3 in log–log axes.

As can be seen in Fig. 5, the theoretically predicted line

follows the same trends against the applied stress as the

experimental results. The same conclusion that the bulk

modulus is proportional to rm
1/3 was also found in [10] and

adopted in the compression model of cohesionless soils in

[47].

The effect of the PSDs on the bulk modulus of granular

materials is predicted using Eq. (38). As mentioned pre-

viously, the PSD is characterized by the parameter

K(= rmin/rmax) and the fractal dimension D. Figure 6 pre-

sents the predicted influence of K and D on the bulk

modulus. To avoid the influence of the material property

(H) and the stress (rm), the bulk modulus KB in the fig-

ure is multiplied by the factor H/rm
1/3 according to Eq. (38).

As seen in Fig. 6a, the decrease of K (increase of the

polydispersity) results in the increase of the bulk modulus,

probably because smaller particles lead to less uniformity

of the contact forces. Figure 6b gives the variation of

KBH/rm
1/3 by theoretical prediction with the fractal

dimension D for K¼0:1. It increases as the value of D

increases initially and decreases afterward. The maximum

value of KBH/rm
1/3 is attained at D & 1.65. A similar

variation trend was found in the DEM simulation of

compression tests on granular samples with the same K ¼
0:1 by Minh and Cheng [43] (see Fig. 6b). In the simula-

tion, 1/Cc was used to reflect the rigidity of the materials,

which is qualitatively equivalent to HKB/rm
1/3. 1/Cc attains

its maximum value at D & 2.1. It is commonly recognized

that the fractal dimension D corresponding to the ultimate

PSD of crushable granular materials is about 2.59. Here,

both the theoretical prediction and the DEM simulation

imply the existence of another characteristic fractal

Table 1 Complete elastic-breakage model for compression of crushable granular materials

Variables

Breakage indicator Ci = (K, D)

Internal energy density u = Hrm
5/3g(K, D)

H ¼ 6
5

ffiffiffi
43

p
X pcsð Þ2=3

1 þ eð Þ2=3

g K;Dð Þ ¼
�D

1�K�Dð Þ2=3
R 1

K
k2�D

R 1

K
1�

ffiffiffiffiffiffiffiffiffiffi
2k0kþk2

kþk0ð Þ2

q� �
k0�1�Ddk0

� �2=3

dk

R 1

K
k2�Ddk

Dissipative energy density _U ¼ Gf

1þe
_S rmax;K;D
� �

S ¼ 3 3�D
2�D

1�K2�D

1�K3�D
1

rmax

Fi = (1 ? e)/(qS/qCi)

Yield criterion

Fivi - Gf \ 0, elastic Fivi - Gf = 0, breakage

Evolution of PSDs

_Ci ¼ 0

_Ck ¼ �
Fi

o2u

oCiorm

_rm

Fi

o2u

oCioCj

Fj þ
ou

oCi

oFi

oBj

Fj

Fk

Stress–strain

� de
1þe

¼ 5
3
Hgr�1=3

m drm, where g is a constant � de
1þe

¼ 5
3
Hgr�1=3

m drm, where g should be coupled with the calculation of breakage
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Fig. 5 Theoretically predicted bulk modulus against the effective

stress compared with experimental results from [47]
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dimension of the PSD, which corresponds to the maximum

value of the bulk modulus.

5.2.2 The yielding stress

Substituting Eqs. (33), (37) and (40) into the yield function

Eq. (45), one can obtain the yield stress rf as

rf ¼ � Gf

HHi
og
oCi

 !3=5

rmaxð Þ�3=5 ð51Þ

where we designate F(rmax, K, D) = H(K, D)rmax for

convenience. Equation (51) indicates that the yield stress

rf depends on the properties of the grain material (Gf and

H) and the PSD of the granular material (represented by Hi,

g and rmax). Equation (51) also implies that the yielding

stress rf is size-dependent with rf � rmax
-3/5. In other words,

the relationship between rf and rmax can be represented by

a straight line with a slope of - 3/5 in log–log scales.

Figure 7 presents the results of single particle crushing

tests on three batches of silica sand grains and one batch of

Toyoura sand grains of different sizes performed by Nakata

et al. [45], together with the theoretical prediction using

Eq. (51) in log–log axes. As can be seen, the experimental

data is basically predicted by Eq. (51). In fact, Eq. (51)

reflects the upscaling law for the breakage of granular

materials. Similar upscaling laws were also obtained by

Zhang et al. [60], who interpreted the size dependence of

the yielding for single particles using fracture mechanics,

breakage mechanics and Weibull statistics. As the upscal-

ing law in Eq. (51) is derived from a granular assembly

with an arbitrary PSD, it may be regarded as an extension

from a single particle scale to a granular assembly scale.

This result may provide a theoretical basis to estimate the

effect of widely variable particle sizes in large-scale

applications for which direct testing is not feasible, such as

rockfill engineering and mining technologies.

Figure 8 shows the effect of the polydispersity (K) and

the fractal dimension (D) of the PSD on the yielding stress

estimated using Eq. (51). To avoid the influence of mate-

rial properties (Gf and H) and the maximum particle size

(rmax), the yielding stress rf in the figure is multiplied by

the factor (rmaxH/Gf)
3/5 according to Eq. (51). The esti-

mated results indicate that in the case of narrow-size dis-

tribution with higher value of K(K ? 1), the yielding

1
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Fig. 6 Influence of the PSDs on the bulk modulus: a predicted bulk modulus against K and D, b comparison of the predicted and simulated

elastic compressibility of granular materials with different fractal dimensions

Fig. 7 Results of single particle crushing tests by Nakata et al. versus

the theoretical prediction
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stress is governed mainly by the polydispersity (see

Fig. 8a), increasing almost linearly with the decrease of K
(increase of polydispersity). In this case, the effect of the

fractal dimension D is nonsignificant compared with K.

However, in the case of highly polydisperse distribution

with smaller value of K(K ? 0), the yielding stress

increases significantly with the increasing polydispersity

(decreasing K) as well as the fractal dimension D, as shown

in Fig. 8b. It can be observed from Fig. 8b that when the

fractal dimension reaches a sufficiently large value in the

case of polydisperse distribution, the yielding stress

increase abruptly, implying that further change of the PSD

requires much greater compressive pressure. It is probably

for this reason that the particle breakage can be attenuated

even under sufficiently great pressure.

5.2.3 Evolution of PSD and void ratio during particle
breakage

The evolution of the PSDs of the Black Beauty slag under

one-dimensional high-compression by Hagerty et al. [25],

as given in Fig. 4, can be predicted by using the elastic-

breakage model proposed in this study. In the prediction,

the Young’s modulus and the Poisson’s ratio of grain

materials are chosen to be E = 100 GPa and m ¼ 0:09,

respectively, in accordance with the order of magnitude of

rock materials. The linear capacity cs of polydisperse

granular materials is taken as a constant value of 3.0 based

on the DEM simulation results performed in Sect. 3.2.

With these model parameters, the bulk modulus is theo-

retically estimated to be 237 MPa for rm ¼ 2MPa, which

basically agrees with the one-dimensional compression test

results reported in [25] assuming the lateral/vertical stress

ratio K0 = 0.4. The strain energy release rate Gf is chosen

to be 300 J/m2, with which the calculated yielding stress

rf ¼ 18 MPa is close to the experimental results of Black

Beauty slag in [25]. The predicted evolution of the PSDs

for Black Beauty slag is presented in Fig. 9, which agrees

basically with the experimental data. Figure 9 also plots

the evolution of the fractal dimension D against the applied

stress. As can be seen, the fractal dimension D increases

with the increasing stress and this trend gradually slows

down, also in accordance with the experimental results.

Here, we would like to recall that unlike in the theory of

breakage mechanics which predefines the evolution path of

the PSD [19], the evolution of the PSD in the proposed

model is purely determined using micromechanics and

thermomechanics. Given such consideration, the model

prediction is quite good.

Figure 10 gives the predicted evolution of the void ratio

e against the applied stress rm (compression curve). As the
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elastic-breakage model does not account for the plastic

deformation, the theoretically predicted compression curve

is not compared with the experimental data. However, the

predicted evolution of the void ratio against the applied

stress follows the same overall trend as obtained from

experiments on crushable soils (e.g., [25, 59]). It consists of

three phases: the elastic compression, breakage stage and

the pseudoelastic stage. During the elastic compression

phase, no particle breakage takes place. When the applied

stress reaches the yielding stress, the particle breakage

occurs and continues until a pseudoelastic phase where the

evolution of the PSD becomes nonsignificant, accompa-

nying with the little change of the void ratio.

6 Discussion on generalization of the model

Despite the thermomechanical and micromechanical

insight provided, the proposed model is only suitable for

isotropic and elastic-breakage problems. In real cases,

particle breakage is often accompanied with particle rear-

rangements, subsequently resulting in plastic deformation

and additional dissipation of energy, designated as _Up.

Moreover, the particle breakage may take place not only

under compression, but also during shearing. Generaliza-

tion of the proposed breakage model from isotropic com-

pression to more general stress states may lay an important

foundation for the physically based constitutive modeling

of granular materials incorporating particle breakage. Here,

rather than give a detailed solution, we point out a possible

way to consider the plastic dissipation and the generalized

stress state.

The plastic dissipation may be considered in the ther-

modynamics statement for isotropic compression as

rm _ee
v þ _ep

v

� �
¼ _uþ _Uþ _Up

� �
ð52Þ

That is to say, the total dissipation is divided into two

additive parts: the plastic dissipation _Up and the dissipation

due to particle breakage _U, although the additivity of _Up

and _U is still a matter of debate. Less trivial form con-

sidering the coupling of plastic-breakage dissipation was

discussed in [20].

In general, the plastic dissipation is a function of the

breakage indicator C and the plastic strain _ep
v expressed as

_Up ¼ _Up C; _ep
v

� �
ð53Þ

The expressions for the internal energy and the dissipation

due to particle breakage remain unchanged, given in

Eqs. (2) and (3). Substituting Eqs. (2), (3) into Eq. (52)

yields

rm

�
Ke

B � ou

orm

� �
_rm ¼ ou

oC
_Cþ _U

� �
þ _Up � rm _ep

v

� �

ð53Þ

Similar to the elastic-breakage formulation, all the terms in

the three brackets should be equal to zero, which means

that the elastic–plastic-breakage problem can be decoupled

into three independent problems. Hence, in addition to

Eqs. (5) and (6), one has

_Up � rme
p
v ¼ 0 ð54Þ

In light of the thermomechanical formulation, the plastic

deformation can be taken into account if we can formulate

a concrete expression for the plastic dissipation defined in

Eq. (53). Of course, we could formulate a plastic dissipa-

tion through the micro–macro procedure, as performed in

Sect. 3. For instance, the work of Zhao et al. [61] has shed

lights on such formulation. Here, a less rigorous but sim-

pler alternative of estimating the plastic dissipation is

proposed by analogy with the frictional dissipation energy

at two contacted surfaces. As the frictional dissipation at

two contacted surfaces is proportional to the normal con-

tact force and the sliding displacement, the plastic dissi-

pation for granular materials is expressed as

_Up ¼ lrmS _e
p
v ð55Þ

where S is the averaged surface per unit volume defined in

Sect. 3, which can be related to the breakage indicator C
via Eq. (28); l is a material constant related to the inter-

particle friction coefficient.

Once the elastic–plastic-breakage model is developed

for isotropic compression, extrapolation to more general-

ized stress state may be completed within the framework of

critical state soil mechanics (see the work by Roscoe and

Burland [49]). In order to account for the influence of

particle breakage, the dissipation due to breakage _U is

0.55
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0.59
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0.63

0.65

0.67

1 10 102 103

   elastic breakage

pseudoelastic

Fig. 10 Stress–void ratio relationship predicted by the proposed

elastic-breakage model
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added in the original work equation by Roscoe and Bur-

land, expressed as

p0 _ep
v þ q _ep

s ¼ _Up þ _U ð56Þ

where p0 is the mean effective stress and _ep
s is the plastic

shearing strain. In isotropic compression, we have p0 = rm.

Details to formulate the constitutive relationship from the

work equation can refer to [14, 15].

7 Conclusion

A micromechanically based model for the compression of

crushable granular materials was established in the

framework of thermomechanics. In this model, no empir-

ical relationship is adopted. Both the internal and dissipa-

tive energies were derived using the micro–macro volume

averaging approach. The energy dissipation due to particle

breakage was directly related to the evolution of the PSD,

which was quantified by three parameters: the particle size

rmax, the polydispersity K and the fractal dimension D. It is

demonstrated that without a predefined evolution path of

the PSD, the yielding and the evolution of the breakage can

be determined by the maximum dissipation principle in the

framework of thermomechanics. The developed model

contains three material parameters that have concrete

physical meanings: (Young’s modulus, Poisson’s ratio and

the strain energy release rate) of the composing particles

and one fabric related constant (the linear capacity) of the

granular system. By using the proposed model, the evolu-

tion of the PSD as well as the void ratio of granular

material can be predicted without any empirical results.

The model was used to investigate the bulk modulus, the

yielding stress as well as the evolution of the PSD and the

void ratio of crushable granular materials under compres-

sion. The results were compared with the experimental and

DEM simulated results in the literature. The following

remarks can be made:

1. Under elastic compression, the bulk modulus of

granular materials is related to both the applied stress

and the PSD. It is proportional to rm
1/3 and increases

with the increasing polydispersity of the PSD. The

elastic bulk modulus increases as the fractal dimension

D increases initially and decreases afterward, implying

the existence of a fractal dimension of the PSD which

corresponds to the maximum value of the bulk

modulus.

2. The yielding stress rf of crushable granular materials

under compression is size-dependent with rf � rmax
-3/5.

As this upscaling law was derived for a granular

assembly with an arbitrary PSD, it might be regarded

as an extension from a single particle scale to a

granular assembly scale. The yielding stress is also

influenced by the polydispersity and the fractal

dimension of the PSD. In the case of narrow-size

distribution, the yielding stress is governed mainly by

the polydispersity and is insensitive to the fractal

dimension, whereas rf increases significantly with the

increasing polydispersity and the fractal dimension in

the case of highly polydisperse distribution.

3. The prediction of the evolution of the PSD using the

proposed model does not need to predefine an evolu-

tion path since it is purely determined on the basis of

the thermomechanics and the principle of maximum

dissipation. Although the proposed elastic-breakage

model cannot predict excellently the compression

curve (i.e., e–rm relationship) of crushable granular

materials, it is capable of predicting the existence of

the elastic-breakage-pseudoelastic compression

phases.
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Appendix: Relationship between CMD
and particle number distribution

The cumulated mass distribution (CMD), denoted here as

u(r), is commonly used in geotechnical engineering to

reflect the PSD of soils. It is defined as the percentage of

mass equal and finer against the particle size

uðrÞ ¼
MðL� rÞ
MT

ð57Þ

where M(L\r) is the mass of particles with radius smaller

than r; MT is the total mass of the granular sample.

An alternative description to reflect the PSD is the

particle number distribution, defined as

p rð Þ ¼
dNðL� rÞ
NTdr

ð58Þ

where N(LBr) is the number of particles with radius equal

and smaller than r, and NT is the total number of particles.

According to Eq. (57), the mass fraction of particles with

radius falling within the interval r; r þ dr½ � is duðrÞ. The

number of particles corresponding to this mass fraction is

thus calculated to be
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dNðL� rÞ ¼ MTdu rð Þ
qVðrÞ ð59Þ

where q is the density of the grain material and V(r) is the

volume of a single particle with radius r. For spherical

particles, we have

V rð Þ ¼ 4

3
pr3 ð60Þ

Based on Eq. (59), the total particle number NT is easily

integrated to be

NT ¼
Z rmax

rmin

dNðL� rÞ ¼
Z rmax

rmin

MT

qVðrÞ
du rð Þ

dr
dr ð61Þ

Substituting Eqs. (59) and (61) into Eq. (58) yields

p rð Þ ¼ duðrÞ
dr



V rð Þ

Z rmax

rmin

1

VðrÞ
duðrÞ

dr
dr ð62Þ

Equation (62) establishes the relationship between the

CMD, i.e., u(r), and the particle number distribution p(r).

Substituting the CMD in Eq. (30) into Eq. (62) and

combining Eq. (60), one can obtain the particle number

distribution p(r) as given in Eq. (32).
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41. McDowell G, Bolton M, Robertson D (1996) The fractal crushing

of granular materials. J Mech Phys Solids 44(12):2079–2101

42. Mesri G, Vardhanabhuti B (2009) Compression of granular

materials. Can Geotech J 46(4):369–392

43. Minh N, Cheng Y (2013) A DEM investigation of the effect of

particle-size distribution on one-dimensional compression.
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