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Abstract: Distinct element simulation was performed for direct shear box (DSB) tests on a dense and a loose two-
dimensional (2D) sample of 3259 cylinders. Special attention was devoted to the effect that the frictional force between
the inside surface of the upper shear box and the sample had on the measured shear strength in the DSB test. Some
ways of minimizing this interface frictional force were introduced in the paper. Given that the deformation approxi-
mates simple shear within the deforming zone across the sample centre (referred to as the shear zone), a method was
proposed to evaluate the overall strains in the DSB test. The numerically simulated data were used to interpret, on a
microscopic scale, the angle of internal friction and a 2D stress–dilatancy equation for the mobilized plane in granular
material. It was found that the angle of internal friction in granular material is not directly related to the interparticle
friction angle (φµ). Instead, it relates to the average interparticle contact angle (θ) on the mobilized plane and the ratio
k/f0, representing the degree of the probability distribution of the interparticle contact forces that is biased toward the
positive zone of the contact angle θ (along the shear direction), where k is the slope of the linear distribution of the av-
erage interparticle contact forces against the interparticle contact angle; and f0 is the average interparticle contact force.

Key words: angle of internal friction, direct shear box test, distinct element method, friction, granular material, stress–
dilatancy.

Résumé : On a réalisé une simulation en éléments distincts pour les essais à la boîte de cisaillement direct (à laquelle
l’abbréviation DSB est attribuée dans cet article) sur un échantillon 2D dense et lâche de 3 259 cylindres. On a ac-
cordé une attention particulière à l’effet de la force de frottement entre l’échantillon et la surface intérieure de la partie
supérieure de la boîte de cisaillement sur la résistance au cisaillement mesurée dans l’essai DSB. On a introduit dans
cet article des façons de minimiser la force de frottement à l’interface. Considérant que la déformation est proche du
cisaillement simple à l’intérieur de la zone en déformation au centre de l’échantillon (soit la zone de cisaillement), on
a proposé une méthode pour évaluer les déformations globales dans l’essai DSB. Au moyen des données numériques
simulées, l’angle de frottement interne et l’équation de contrainte de dilatance bidimensionelle sur le plan mobilisé
pour un matériau granulaire ont été interprétés à l’échelle microscopique. On a trouvé que l’angle de frottement interne
du matériau granulaire n’est pas en relation directe avec l’angle de frottement interparticule φµ. Il est plutôt en relation
avec l’angle moyen de contact interparticule θ sur le plan mobilisé et le rapport k/f0 représentant la distribution de la
probabilité des forces de contact interparticule tendant vers la zone positive de l’angle de contact θ (le long de la di-
rection du cisaillement), où k est la pente de la distribution linéaire de la moyenne des forces de contact interparticule
par rapport à l’angle de contact interparticule, et f0 est la force moyenne de contact interparticule.

Mots clés : angle de frottement interne, essai de cisaillement direct, méthode d’éléments distincts, frottement, matériau
pulvérulent, contrainte–dilatance.
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Introduction

The testing of soils by applying a shear load (or displace-
ment) has resulted in a worldwide revival of interest over the
last few decades. Several types of laboratory device have
been developed for directly determining the shear strength
envelope for soils. Among them, the direct shear box (DSB)
test, with both an upper shear box and a lower one, has most
commonly been used, because the testing procedures are
simple, and it is capable of approximately simulating the de-
formation conditions of plane strain as occurs in many field

problems. In the conventional DSB test, shearing of the
sample is often achieved by pushing the lower shear box
horizontally while the upper shear box is restrained verti-
cally and horizontally (Taylor 1948; Skempton and Bishop
1950), as shown in Fig. 1. The shear force is measured with
a bearing ring or a load cell that is attached to the upper
shear box. In this DSB device, a frictional force is generated
at the attachment point when the upper shear box moves up
or down as a result of the volume change in the sheared
sample (dilation or contraction). Sometimes, to prevent tilt-
ing of the upper shear box during the shearing process, a
clasp is set opposite the attachment point. In turn, the fric-
tional force at the attachment point and the clasp restrain the
upward or downward movement of the upper shear box.
Consequently, a frictional force between the inside surface
of the upper shear box and the sample is generated when the
volume of the sheared sample changes (dilation or contrac-
tion). Owing to this frictional force at the shear box – sam-
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ple interface, the shear strength is generally overestimated
for dilatant specimens (like coarse granular soils) but under-
estimated for contractive specimens in the DSB tests, as re-
ported by Takada et al. (1996) and Sumi et al. (1997).
Moreover, the DSB test is inevitably subject to such criti-
cisms as the full stress and strain states are not defined; and
only the horizontal shear stress (τzx) and the vertical stress
(σz) are available. The strains cannot be obtained from the
measured horizontal (shear) displacement (D) and the verti-
cal displacement (h) because of the nonuniformity of the de-
formation throughout the sample in the DSB test. For this
reason, difficulties arise in understanding the relationship
between parameters derived from the DSB test and those de-
rived from other laboratory and field testing devices.

In this paper, distinct element simulation is performed for
the DSB test for better understanding of the intrinsic draw-
backs in this test, since it can provide microscopic informa-
tion that is difficult to obtain experimentally, such as particle
displacements and the particle–particle contact force net-
work. The possible ways to remove or minimize the fric-
tional force at the internal surface of the upper shear box are
then introduced. On the basis of the numerically simulated
results, a method to evaluate strains in the DSB test is pro-
posed. Furthermore, the angle of internal friction and a

stress–dilatancy relationship for granular material are inter-
preted on the microscopic scale.

Discrete modeling of the direct shear box
test

Distinct element method
The discrete method used is the distinct element method

(DEM) pioneered by Cundall (1971) and Cundall and Strack
(1979). The DEM is a numerical technique that keeps track
of the motion of individual particles and updates any contact
with neighboring elements by using a constitutive contact
law. In two dimensions (2D) each particle has three degrees
of freedom (two translations and one rotation). Each particle
can be in contact with neighboring particles or boundaries.
In the present work, the DEM program used is GRADIA
(Yamamoto 1995). The particles in GRADIA are circular;
their mechanical interaction is characterized by using the so-
called soft contact approach. In this approach, although the
particles are assumed to be rigid for the purposes of shape
definition, elastic deformation is allowed to take place at the
contacts. The constitutive contact model used in GRADIA is
shown in Fig. 2a. It consists of two parts: (1) a stiffness
model providing a linear elastic relation between the contact
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Fig. 1. Schematic of conventional direct shear box test device

Fig. 2. Simulation of direct shear test: (a) DEM contact model; (b) box description.



force and the contact relative displacement in the normal
and shear directions; and (2) a slip model enforcing a
Coulomb-type relation between the shear and normal contact
forces. Because of the dynamic formation of the model, en-
ergy dissipation through frictional sliding may not be suffi-
cient for a steady-state solution. Additional dissipation is
achieved by small amounts of viscous damping. The forces
generated at a contact are computed on the basis of the over-
lap of the bodies at the contact and the stiffness of the
springs. The forces from all the contacts on a single body
are summed, yielding a resultant force, which is then used to
compute the acceleration of the body according to Newton’s
second law of motion. After the acceleration is determined,
the new velocity and displacement of the particle are com-
puted by using central difference explicit time integration.
With the newly computed displacement configuration, the
state of deformation at existing contacts is reevaluated, and
the possible creation of new contacts is evaluated, leading to
a new cycle of computation.

Simulation process
The initial state of the DEM sample is created by random

deposition under gravity of circular particles into a shear
box with a unit thickness. The DEM sample consists of cir-
cular particles having binary diameters of 5 and 9 mm that
are mixed in a ratio of 3:2 by area, simulating an assembly
of aluminum rods that I had used in experimental tests. To
investigate the difference between the frictional force pro-
duced on the inside surface of the upper shear box by
dilatant behavior of the specimens and that produced by con-
tractive behavior, two distinct initial states with void ratios
of e0 = 0.196 and 0.233 are generated. The looser initial
state (e0 = 0.233) is obtained by following the above deposi-
tion procedure and using the particle–particle friction angles
of φµ = 16°, whereas the denser one (e0 = 0.196) is the result
of the same procedure but using φµ = 0°. The particle depo-
sition under φµ = 0° is a numerical technique to create a
denser sample, as used by some researchers (e.g., Thornton
2000; Masson and Martinez 2001). The particle–particle
friction angle, φµ = 16°, is introduced after the deposition
under φµ = 0°, just before the beginning of the shearing ac-
tion. The denser DEM sample has 3259 particles, contained
in a shear box 40 cm wide × 25.42 cm high (Fig. 2b); the
looser DEM sample has the same number of particles, but
they are contained in a slightly higher shear box, which is
40 cm wide × 26.21 cm high. As shown in Fig. 1, in the con-
ventional DSB test the upper shear box is usually constricted
vertically with a clasp to prevent it from rotating, and it is
attached horizontally to a bearing ring or load cell for mea-

suring the shear force, which causes the upper shear box to
remain almost stationary during the shearing process. Thus,
in the simulation, the upper shear box approximates a fixed
position in both vertical and horizontal directions. The parti-
cles are sheared by the lower shear box moving horizontally
at a speed of 0.5 cm s–1 under the application of a constant
vertical stress of σ = 49 kPa on the top plate of unit thick-
ness.

The input parameters used in our simulation are summa-
rized in Table 1 and correspond to the properties of alumi-
num. The normal and shear stiffness (kN, kS) and damping
(ηN, ηS) in Table 1 are based on the contact theory of two
elastic discs and consider the level of stress possibly applied
to the granular sample. The interparticle friction angle (φµ =
16°) is obtained from the frictional tests on aluminum rods.
The time step ∆t is chosen to be 1/10 of the critical time step
∆tc in order to maintain a quasi-static state during the calcu-
lation, where ∆tc = 2(m/k)1/2, which is based on the single
degree-of-freedom system of a mass m connected to the
ground by a spring of stiffness k.

Simulation results focusing on the interface friction
inside the upper shear box

Figure 3 shows the simulation results in terms of macro-
scopic behavior for the two initial densities. The macro-
scopic shear stress to normal stress ratio (τ/σN) is calculated
separately through T/N and T/P, where P is the applied nor-
mal force on the top plate; and T and N are the shear and
normal forces on the split plane (shear plane), which are de-
duced from the static equilibrium of the lower half sample
by summing the horizontal and vertical forces acting on its
boundaries (vertical walls and bottom plate), respectively.
Clearly, T/N is the true stress ratio for the shear plane ex-
cluding the effect of the interface frictional forces inside the
upper shear box, whereas T/P is the stress ratio equivalent to
the one measured from the usual tests involving the interface
frictional forces inside the upper shear box. The vertical dis-
placement (h) is obtained from the vertical displacement of
the top plate, representing the overall volume change. It is
seen from Fig. 3a that the denser sample exhibits a very stiff
response at the beginning of shear. As a typical response of
dense assemblies, the volume increase observed during shear
characterizes dilatant behavior. Shearing of the loose sample
(see Fig. 3b) is produced with a lower rate of shear stress in-
crease than is shearing of the dense sample, which clearly
leads to a softer macro-shear modulus. The change in vol-
ume of the loose sample corresponds to contractive behavior.
Thus, these simulations provide macroscopic behaviors that
are representative of dense and loose granular materials.
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Particle–particle Particle–wall

Normal stiffness, kN, k N′ (N m–1 m–1) 5.0 × 109 9.0 × 109

Shear stiffness, kS, k S′ (N m–1 m–1) 1.5 × 108 3.0 × 108

Normal damping, ηN, ηN′ (N s m–1 m–1) 5.56 × 104 7.8 × 104

Shear damping, ηS, ηS (N s m–1 m–1) 0.99 × 104 1.4 × 104

Interparticle friction angle, φµ, φ u′ (°) 16 16

Density of particles, ρ (kg m–3) 2700
Time increment, ∆ t (s) 5 × 10–7

Table 1. Input parameters for numerical simulation by DEM.



Moreover, it can be seen that the stress ratio τ/σN calculated
by T/N is smaller than that calculated by T/P for the dense
sample and vice versa for the loose sample.

Figure 4 shows the instantaneous velocity field of the par-
ticles within the granular specimens. It can be observed that
for both the dense and the loose samples, particles in the
lower shear box displace horizontally in general. However,
for the dense sample, particles in the upper shear box are
driven by an upward motion due to dilation (Fig. 4a),
whereas for the loose sample, particle motion velocities are
downward, corresponding to sample contraction (Fig. 4b).

Figure 5 shows the networks of contact forces correspond-
ing to the shear displacements of D = 7 mm for the dense
sample and D = 4 mm for the loose sample, with details of
the transmission of forces between the vertical walls of the
upper shear box and the boundary particles. It is seen that
the resultant frictional force beside the vertical walls of the
upper shear box is downward for the dense sample because
of dilation, whereas it is upward for the loose sample be-
cause of contraction. For the dense sample, the downward

interface friction force leads to N > P and in turn T/N < T/P
(see Fig. 1). In contrast, the contractive behavior of the loose
sample results in T/N > T/P. This scenario correlates well
with the experimental observations that the shear strength
obtained from the conventional DSB test is usually overesti-
mated for dilatant specimens but underestimated for contrac-
tive ones.

The inside-wall frictional force of the upper shear box can
be minimized or even eliminated if the upper shear box is al-
lowed to move freely in the vertical direction. Figure 6 pres-
ents a possible way to do this: smooth Teflon rods and a
Teflon plate (the coefficient of friction for Teflon is about
0.02) are inserted between the upper shear box and the bear-
ing ring, and the clasp is eliminated (Matsuoka et al. 2001).
To prevent the top plate from jamming within the upper
shear box if either the upper shear box or the top plate tilts
during shear, the top plate (loading plate) is lifted up to the
rim of the upper shear box. Figure 7 shows the simulation
results of the modified DSB tests on the same two dense and
loose DEM samples. It can be seen that the evolution of the
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Fig. 3. Numerically simulated evolution of shear stress to normal stress ratio and volume change for the conventional direct shear box
tests: (a) dense sample; (b) loose sample.

Fig. 4. Particle instantaneous velocity field: (a) dense sample; (b) loose sample.
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Fig. 5. Particle–particle and particle–wall contact forces network: (a) dense sample; (b) loose sample.

Fig. 6. Conventional direct shear box improved with low-friction Teflon rods and Teflon platen.

Fig. 7. Numerically simulated evolution of shear stress to normal stress ratio and volume change for the improved direct shear box
tests: (a) dense sample; (b) loose sample.



shear stress to normal stress ratios determined by T/N agrees
quite well with that determined by T/P for the dense and
loose samples, indicating the effectiveness of the proposed
method for reducing the inside-wall frictional force of the
upper shear box.

In the above discrete simulations, the normal force (N) on
the shear plane is deduced from the resultant vertical forces
(along the gravity direction) on all boundaries of the lower
shear box, thanks to the static equilibrium in the gravity di-
rection. This suggests that the true normal force (N) on the
shear plane can be equivalently and accurately measured on
the opposite side of the loading plate. It is worthwhile men-
tioning that this technique has been adopted as a standard for
the DSB test by the Japanese Geotechnical Society (1997).

Strain evaluation in direct shear box test

In DSB tests, the full strain state is not defined, because
the deformations throughout the sample are not uniform. In-

formation is available only on the horizontal (shear) dis-
placement (D) and the vertical displacement (h). These in-
trinsic drawbacks make the proper interpretation of the DSB
test difficult. However, as revealed by the DEM simulation
(Fig. 8) (also see Thornton and Zhang 2001), the shear de-
formation in the central region of the sample is relatively
uniform, exhibiting nearly simple shear. Such a region, with
uniform shear deformation, is commonly called the shear
zone, or shear band. The thickness (L) of the shear zone in
Fig. 8 is about 7 cm, that is, 10 times the average grain size
of the DEM sample. Given the thickness (L) of the shear
zone, the shear strain (γzx) and the normal strain (εz) on the
horizontal plane can be estimated by

[1] γzx = D/L, εz = h/L

representing the overall degree of shearing in the DSB test.
Figure 9a compares the stress–strain curves of the DSB test
corresponding to Fig. 7a, where the strains are calculated
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Fig. 8. Simple shear mode of deformation in the central part of the direct shear box test.

Fig. 9. (a) Comparison of the simulated stress–strain relationships of direct shear box (DSB) and simple shear tests on the horizontal
plane; (b) simple shear mode of deformation assumed in DSB test.



with eq. [1], using L = 7 cm, with those from the simple
shear test (SST) using the same particle composition (Liu
and Matsuoka 2001, 2003). The good agreement between
those two test results supports the assumption that each ele-
ment of the sample in the DSB test undergoes a simple shear
deformation within the shear zone, as schematically depicted
in Fig. 9b. Thus, if the thickness of the shear zone is prop-
erly determined, the overall strains in the DSB test can be
defined.

In the idealized simple shear mode of deformation, the
length of the sample remains constant during shear, leading
to a zero horizontal strain increment, that is, dεx = 0. As a re-
sult, the principal strain increments (dε1, dε3) in the DSB test
can be obtained from Mohr’s circle of incremental strain
(Fig. 10a) (Bolton 1986; Shibuya et al. 1997; Lings and
Dietz 2004):
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where the increments of the shear strain (dγzx) and the nor-
mal strain (dεz) on the horizontal plane are estimated from
eq. [1]. The angle of dilation (ν) (see Fig. 9b) is obtained
from the rate of change of vertical displacement (h) (com-
pression is taken as positive) with horizontal displacement (D):

[3] ν = tan–1 (–dεz/dγzx) = tan–1 (–dh/dD)

which assumes that all dilation occurs within the simple
shear zone of thickness L. The 2D volumetric strain is given
by

[4] dεν = dε1 + dε3

To verify the above strain evaluation method for the DSB
test through comparisons with the biaxial compression test,
the principal stresses in the DSB test need to be determined
as well. Experiments by, for example, Cole (1967) and Dyer
(1986) have shown that at peak state, the principal axes of
stress and incremental strain coincide in the idealized simple
shear mode of deformation. This coaxiality is assumed to be
true as well during the pre-peak simple shear deformation.
Under this assumption and the condition of zero horizontal
strain increment, the principal stresses (σ1 and σ3) in the

simple shear deformation are given by the following (see
Fig. 10):

[5a] σ σ ν
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1= + +⎛

⎝
⎜

⎞
⎠
⎟z zx

sin
cos

[5b] σ σ ν −
ν

τ3
1= + ⎛

⎝
⎜

⎞
⎠
⎟z zx

sin
cos

where σz is the average vertical stress (= P/A, where A is the
cross-sectional area of the sample); and τzx is the average
shear stress (= T/A). Figure 11 compares the principal
stress–strain relationships for the DSB test and SST corre-
sponding to Fig. 9a with those of the numerically simulated
biaxial compression test using a similar particle composition
(Liu 1999; Matsuoka et al. 1999). The good agreement of
the principal stress–strain curves from these three types of
tests indicates the reasonableness of the proposed strain
evaluation for DSB tests.

It is noted that the principal strain increments (dε1 and
dε3) calculated by eq. [2] are in 2D form. For DSB tests on
field soils, however, the principal strain increments should
be converted into three-dimensional (3D) ones so that they
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Fig. 10. Mohr circles of strain increments and stress in direct shear and simple shear tests.

Fig. 11. Comparison of the numerically simulated results of di-
rect shear box, biaxial compression, and simple shear tests in
terms of the principal stress–strain relation.



can be compared with the results of triaxial compression
tests. For this purpose, the concept of compounded mobi-
lized planes (CMPs), proposed by Matsuoka (1974, 1983),
is used. Based on the CMP concept, the principal strain in-
crements under triaxial compression conditions (d 1

3Dε and
d 2

3Dε = d 3
3Dε ), are given

[6a] d 1
3Dε = 2dε1

[6b] d 2
3Dε = d 3

3Dε = dε3

[6c] dεν = d 1
3Dε + 2d 3

3Dε

The above strain estimation method for the DSB test is
based on the assumption that the resultant horizontal strain
increment is at all times zero, that is, an assumption that
simple shear conditions exist in the shear band of the DSB
test with the Mohr’s circles of incremental strain and stress
shown in Fig. 10 (Morgenstern and Tchalenko 1967; Rowe
1969; Wroth 1987; Dounias and Potts 1993; Shibuya et al.
1997). In the DSB test, the angle of shearing resistance is
usually defined by φds = tan–1 (τzx /σz), where τzx and σz are
the horizontal shear and vertical normal stresses on the hori-
zontal plane, respectively. As can be seen in Fig. 10b, the
angle of shearing resistance on the plane of maximum stress
obliquity defined by φ = sin–1 [(σ1 – σ3)/(σ1 + σ3)] does not
coincide with φds on the horizontal plane, suggesting that the
horizontal failure plane in the DSB test is not the plane of
maximum stress obliquity.

This issue is then investigated by using the DEM simula-
tion results. Figure 12 shows the interparticle contact forces
network in the simulated DSB test. The stresses in the DSB
test can be calculated from the interparticle contact forces as
follows (Christoffersen et al. 1981):

[7] σij i j
R

l F V=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ /

where R is the calculation domain; V is the volume of the
domain; l is the length of vectors connecting the centers of
contacting particles; and Fj is the contact force. As schemat-
ically shown in Fig. 13, we define the angle β as the inclina-
tion of the major principal stress (σ1) computed from the
interparticle contact forces on the horizontal plane. Theo-

retically, the angle between the major principal stress (σ1)
and the plane of maximum stress obliquity is 45° – (φmo /2),
in which φmo is the mobilized friction angle. Figure 14
shows the distribution of the inclination angle β along the
horizontal plane at the peak state (shear displacement D =
6.5 mm). Because the failure in the DSB test occurs within
the shear band, the calculation of the stresses from the
interparticle contact forces, using eq. [7], is limited within
the shear band. It is seen that for a large proportion of the
sample, the inclination angle β is larger than 45° – (φmo /2).
Furthermore, this finding also holds true during the shearing
process, as shown in Fig. 15. In the simulated case, the dif-
ference between the angle of the plane of maximum stress
obliquity and the angle of the horizontal failure plane is
about 5°–6°.

Provided that the direction of the major principal strain in-
crement (dε1) is inclined by 45° – (ν/2) to the horizontal and
that the direction of σ1 coincides with that of dε1 at failure,
the relationship between φ and φds is given by the following
equation (Davis 1968) (see Fig. 10):

[8] tan φds = sin φ cos ν/(1 – sin φ sin ν)
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Fig. 12. Interparticle contact forces network in the simulated direct shear box test.

Fig. 13. Inclination of principal major stress (σ1) from inter-
particle contact forces.



According to eq. [8], the value of φds is less than the value of
φ. Usually, the shear strength in the DSB test is computed on
the horizontal plane (i.e., φds), which is thus considered to be
on the safe side for the purposes of design.

Microscopic interpretation of angle of shearing
resistance for granular material

Paying attention to the interparticle contacts along a mobi-
lized plane (the plane of maximum stress obliquity at a
given stress state) as shown in Fig. 16 and denoting the
interparticle contact angle by θi, the interparticle contact
force by fi, and the mobilized interparticle friction angle by
φ�moi, one can obtain the following equation from the equi-
librium of interparticle forces on the mobilized plane:

[9]
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where n is the number of the interparticle contacts along the
mobilized plane; and φci (subscript “c” denotes “contact”) is
the angle between the interparticle contact force (fi) and the
normal to the mobilized plane. In this paper, the angle φci (=
θi + φµmoi), varying from –π/2 to π/2, is defined for conve-
nience as the angle of interparticle force.

Along the mobilized plane, all the interparticle forces (fi)
can be characterized by a probability distribution function
with respect to the angle φci, denoted as F(φc). Figure 17a
shows the normalized distribution of F(φc) in the shear zone
corresponding to those shown in Figs. 8 and 12. It is found
that the normalized F(φc) takes approximately a triangular
distribution, which can be expressed as
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where hp and φcp are the height and the corresponding angle
of interparticle force at the peak of the triangular distribu-
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Fig. 14. Inclination of major principal stress (β) along the sepa-
ration (horizontal) plane, at D = 6.5 mm.

Fig. 15. Inclination of major principal stress during shear.

Fig. 16. Equilibrium for interparticle contact forces on the mobilized plane.



tion, respectively. Replacing fi in eq. [9] approximately with
F(φc) and integrating over the angle range, one can get
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in which F(θ) and φµmo(θ) are the probability distribution of
interparticle contact forces and the mobilized interparticle
friction angle with respect to the contact angle θ along the
mobilized plane, respectively. As is apparent, the angle φc is
the average angle of the interparticle forces weighted by
F(θ).

Figure 17b shows the distribution of the contact numbers
with respect to the contact angle θ, designated as N(θ), along
the mobilized plane in accordance with Fig. 17a. Similarly,
it can also be approximated with a triangular distribution.
The average interparticle contact angle (θ) is calculated by

[13] θ
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From Fig. 17, one can compute the distribution of the av-
erage interparticle force, f(θ), which is shown in Fig. 18.
Generally speaking, the interparticle contact force has a
higher value along the shearing direction (θ > 0) than against
it (θ < 0) (also see Fig. 12). The average interparticle force
f(θ) can be fitted linearly as

[14] f(θ) = f0 + kθ

where k is the slope of the straight line for f(θ); and f0 = f(0)
is taken as the average within the range –π/2 to π/2. It is
seen that f(θ) is biased (favorable) toward the shearing direc-
tion with k > 0 and becomes an even distribution (k = 0) if
the contact force at each contact was assumed to be con-
stant.

For a specific contact angle (θ), the total interparticle con-
tact force, F(θ), is the product of the average interparticle
force f(θ) and the number of the contacts N(θ), as shown in
Fig. 19. It is expressed as

[15] F(θ) = f(θ)N(θ) = (f0 + kθ)N(θ)

Replacing F(θ) in eq. [12] with eq. [15], we have
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Fig. 17. Triangular probability distributions of (a) interparticle contact forces, F(φc), and (b) interparticle contact angles, N(θ), on the
mobilized plane.

Fig. 18. Linear probability distribution of the average inter-
particle contact forces plotted using the data in Fig. 17.



The reader may refer to Liu and Matsuoka (2001, 2003)
for the implementation details.

Figure 20 shows the evolution of the statistically micro-
scopic variables φc and θ during the shearing process of the
simulated DSB test (for simplicity, φc and θ are analyzed on
the horizontal plane). The difference (angle δ) between these
two variables varies slightly when γzx > 1%. A similar trend
has also been exhibited in the SSTs on different samples and
in the in situ DSB tests on various granular materials (Liu
and Matsuoka 2001, 2003). Thus, the difference angle (δ)
may be assumed to be constant during shear except for small
strains.

As the mobilized angle of internal friction of granular ma-
terial is commonly defined as φ = tan–1 (τ/σN), it is under-
stood from eqs. [11] and [16] that φ is related to the average
contact angle (θ) and the ratio k/f0 representing the degree of
the probability distribution of the interparticle contact forces
that is biased toward the positive zone of the contact angle
(θ) (along the shearing direction). It may be recognized that
the shear strength need not necessarily change if the
interparticle friction (φµ) varies. In other words, the internal
friction angle (φ) of granular material does not directly relate
to the interparticle friction angle (φµ). This argument is con-
trary to what is usually recognized for the shear strength (or
the internal friction angle, φ) of granular materials (e.g., Lee
and Seed 1967; Matsuoka and Yamamoto 1994), but it
agrees with the discussions by Skinner (1969), Walton and
Braun (1986), Cambou et al. (1993), and Oger et al. (1998),
who found that the global internal friction angle (φ) in-
creases with the interparticle angle (φµ) at a very small value
of φµ but is essentially constant for a larger φµ value.

Microscopic interpretation of a stress–
dilatancy relationship for granular material

Matsuoka (1974) correlated the ratio of the normal strain
increment to the shear strain increment, –dεN/dγ, with the
probability distribution, N(θ), of interparticle contact angles
along the mobilized plane as follows:
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As mentioned above, N(θ) can be approximated with a tri-
angular distribution (Fig. 17b). Substituting the triangular

distribution into the right-hand side of eq. [17] and integrat-
ing it, we get

[18] − = −d
d
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θ θ
π θ

tan
cos

3
6

3

Associated with eqs. [11], [16], and [18], the relationship
between the shear stress to normal stress ratio (τ /σN) and the
normal strain increment to shear strain increment ratio
(–dεN /dγ), that is, the stress–dilatancy relationship, is
through three microstructural parameters, φc, θ, and δ, where
the angle δ is assumed to be constant during shear as men-
tioned earlier.

Corresponding to the possible ranges of φc < 50° for com-
mon granular soils, the value of tan 3φc – [6φc/(π cos 3φc)]
varies from tan 1.09φc to tan 1.07φc. Equation [11] is thus
converted to

[19]
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φ φ

π φ
φ

N
c

c

c
c1.08= − ≅tan

cos
tan3

6
3

Likewise, eq. [18] is converted to
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Fig. 19. Composition of the probability distribution of the total contact forces on the mobilized plane: (a) probability distribution of
the contact angles; (b) probability distribution of the average contact forces; (c) probability distribution of the total contact forces.

Fig. 20. Evolution of the microscopic quantities φc, θ , and δ in
the shear band during the shear process.



Subsequently, the explicit expression of the stress–
dilatancy relationship through eqs. [11], [16], and [18] may
be converted to

[21]
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and µ = tan 1.08δ

It is apparent that eq. [21] is the same expression as pro-
posed by Matsuoka (1974), but the parameters have a differ-
ent physical significance. The parameters λ and µ are
functions of δ dependent on the interparticle microstructures:
the average contact angle (θ) and the distribution of the
interparticle contact forces during shearing deformation
(dominant along the shear direction).

For the simulated DSB test, the average value of δ during
the shearing process is about 8°. Microscopically, the stress–
dilatancy relation calculated with δ = 8° through eqs. [11],
[16], and [18] (solid line) and through eq. [21] (dashed line)
are plotted in Fig. 21a. Meanwhile, from the macroscopic
point of view, the measurable stress–dilatancy relation ob-
tained in the simulated DSB test is marked in Fig. 21a as
well, with circles. These values appear to be very consistent.
Furthermore, for other granular field materials, such as

Toyoura sand (0.10–0.30 mm diameter; e0 = 0.71), crushed
sand (0.42–2.0 mm diameter; e0 = 0.82), and Kiso River
sand (0.07–2.0 mm diameter; e0 = 1.03), the average value
of δ during shear ranges from 32° to 37° (Liu and Matsuoka
2003). The stress–dilatancy relations from the proposed
method are accordingly marked in Figs. 21b–21d. The
agreements are obvious as well. Therefore, eqs. [11], [16],
and [18] or eq. [21] excellently explain the stress–dilatancy
relationship of granular materials on the mobilized plane
quantitatively allied with the microscopic and macroscopic
behaviors.

Conclusions

In this paper, the intrinsic drawbacks involved in perform-
ing and interpreting conventional DSB tests have been iden-
tified through DEM simulations. The angle of internal
friction and a stress–dilatancy relationship for granular ma-
terial are interpreted from a microscopic view of point.

In the conventional DSB test where the vertical movement
of the upper shear box is restrained, the measurement of the
average normal stress on the horizontal plane involves a fric-
tional force developed between the inside surface of the up-
per shear box and the sample, which is downward for the
dense sample (dilatant sample) and upward for the loose
sample (contractive sample). As a result, the shear strength
is overestimated for the dense sample and underestimated
for the loose sample in the conventional DSB test. The influ-
ences of this interface frictional force can be minimized or
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Fig. 21. Microscopically based stress–dilatancy relationships (lines) and experimental results (plots).



even eliminated if the upper shear box is allowed to move
freely in the vertical direction or the normal force is mea-
sured on the side opposite the loading plate.

In the DSB test, a thin soil element at mid-height is sub-
jected to simple shear deformation. Given the thickness of
this deformation, the shear and the normal strains on the
horizontal plane can be readily estimated; these can in turn
be converted into the principal strains and are extendable to
3D. The experimental validations clearly indicate that the
proposed strain estimation method is rational; thus, the DSB
test may be used to establish the constitutive relationship for
granular materials as well.

The internal friction angle (φ) for granular material is re-
lated to the statistically microscopic value φc by eq. [11],
where φc is the sum of the average contact angle (θ) and the
angle δ. The angle δ depends on the interparticle microstruc-
tures: the average contact angle (θ) and the ratio k /f0, char-
acterized by a probability distribution of the average
interparticle contact forces that is biased toward the positive
zone of the contact angle θ (along the shear direction). For
most granular materials, the angle δ depends weakly on the
interparticle friction angle (φµ) except when φµ has very low
values.

The stress–dilatancy relationship of granular material
based on the mobilized plane, that is, the relationship be-
tween the shear stress to normal stress ratio (τ /σN) and the
normal strain increment to shear strain increment ratio
(–dεN /dγ) can be correlated to three microscopic variables,
φc, θ, and δ through eqs. [11], [16], and [18] or eq. [21].

Finally, it is pointed out that in this paper, the more rea-
sonable derivations for eqs. [11] and [18] have been
achieved by using the two triangular distributions of F(φc)
and N(θ), resulting in µ = tan 1.08δ.
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