
Engineering Computations
A yield function for granular materials based on microstructures
Sihong Liu Zijian Wang Yishu Wang Liujiang Wang Zhongzhi Fu

Article information:
To cite this document:
Sihong Liu Zijian Wang Yishu Wang Liujiang Wang Zhongzhi Fu , (2015),"A yield function for granular
materials based on microstructures", Engineering Computations, Vol. 32 Iss 4 pp. 1006 - 1024
Permanent link to this document:
http://dx.doi.org/10.1108/EC-04-2014-0093

Downloaded on: 29 June 2015, At: 01:42 (PT)
References: this document contains references to 23 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 29 times since 2015*

Users who downloaded this article also downloaded:
Chuanqi Liu, Qicheng Sun, Guohua Zhang, (2015),"Multiscale properties of dense granular
materials", Engineering Computations, Vol. 32 Iss 4 pp. 956-972 http://dx.doi.org/10.1108/
EC-04-2014-0084
Mingjing Jiang, Wangcheng Zhang, (2015),"DEM analyses of shear band in granular materials",
Engineering Computations, Vol. 32 Iss 4 pp. 985-1005 http://dx.doi.org/10.1108/EC-04-2014-0088

Access to this document was granted through an Emerald subscription provided by Miss Sarah Liu

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of
download.

D
ow

nl
oa

de
d 

by
 E

m
er

al
d 

St
af

f,
 M

is
s 

Sa
ra

h 
L

iu
 A

t 0
1:

42
 2

9 
Ju

ne
 2

01
5 

(P
T

)

http://dx.doi.org/10.1108/EC-04-2014-0093


A yield function for granular
materials based on
microstructures

Sihong Liu, Zijian Wang, Yishu Wang and Liujiang Wang
College of Water Conservancy and Hydropower Engineering,

Hohai University, Nanjing, China, and
Zhongzhi Fu

Nanjing Hydraulic Research Institute, Nanjing, China

Abstract
Purpose – The purpose of this paper is to propose a new yield function for granular materials based
on microstructures.
Design/methodology/approach – A biaxial compression test on granular materials under different
stress paths is numerically simulated by distinct element method. A microstructure parameter S that
considers both the arrangement of granular particles and the inter-particle contact forces is proposed.
The evolution of the microstructure parameter S under the simulated stress paths is analyzed, from
which a yield function for granular materials is derived. The way of determining the two parameters
involved in the yield function is proposed.
Findings – The new yield function is calibrated using the test data of one sand and two rockfill
materials. The shape of the new yield surface is similar to that of the Cam-clay model.
Originality/value – The paper proposes a microstructure parameter S, which considers both the
arrangement of granular particles and the inter-particle contact forces. From the evolution of S,
a yield function for granular materials is derived. The proposed yield function has a simple
structure and the parameters are easy to be determined, leading to a feasible realization of engineering
application.
Keywords Microstructure, Granular material, DEM, Stress path, Yield function
Paper type Research paper

1. Introduction
A yield function is one of the cores in classic elasto-plastic theories, which is the
criterion of loading and unloading. The corresponding yield surface is the boundary to
distinguish the elastic deformation region and the plastic deformation region.
A number of yield functions have been proposed for geo-materials. The earliest one
may be the Mohr-Coulomb rule, which was developed by Mohr in 1900 from the
Coulomb’s rock failure criterion. Roscoe et al. established a yield function on the basis
of drained and undrained triaxial compression tests on normally consolidated and
overconsolidated clay, from which the famous Cam-clay model was developed. It is
the earliest classic elasto-plastic constitutive model of soils that can better reflect the
elasto-plastic deformation characteristics of soils, especially the plastic volumetric
deformation (Roscoe et al., 1958). Another yield functions that are the most commonly
used may be the Drucker-Prager, Matsuoka-Nakai and Lade-Duncan criteria (Drucker
et al., 1955; Lade and Duncan, 1977; Matsuoka et al., 1999). These yield functions wereEngineering Computations:
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established mostly on the basis of macroscopic experiments or on the assumption
of the energy dissipation. Few attentions were paid on the microscopic essence of
yield functions.

Granular materials consist of discrete particles and their mechanical properties
depend largely on the linkage and arrangement of particles that are defined as the
microstructures. Now, the study of the microstructures of granular materials is a hot
issue. As early as the 1920s, Terzaghi, the founder of Soil Mechanics, first, suggested
the honeycomb structure of clay, starting the research on the microstructure of soils.
In the past decades, great efforts have been devoted to study the macroscopic
mechanics behavior of granular materials in terms of its microstructures. For example,
Oda (1972) studied the particle contact normals of sand samples after triaxial
compression tests, and found that the frequency distribution of particle contact
normals concentrates on the direction of the major principle stress during shearing
(Oda, 1972); Matsuoka (1974) carried out direct shear tests on assemblies of both
photoelastic and aluminum rods, on which a stress-shear dilatancy equation was
derived from the frequency distribution of particle contacts on the mobilized plane
(Matsuoka, 1974).

As granular materials consist of particles, it is more realistic to study their
mechanical behaviors if we use distinct element approaches in which the particle
arrangement is modeled explicitly. Recent distinct element approaches started with the
distinct element method (DEM) that was first developed by Cundall for rock mass
problems and later applied to granular materials by Cundall and Strack (1979). DEM
can provide sufficient micro-mechanical data such as the displacement of individual
particles, contact orientations, contact forces and mobilized inter-particle frictional
angles. It is based on the Newton’s Second Law of Motion, and does not need constitutive
models as used in continuum approaches, which are gotten from experiments or
experiences. Thus, DEM is especially fit for studying the mechanism of granular
materials. For example, it has been applied to study the stress-dilatancy relation (Liu and
Matsuoka, 2003; Liu, 2006), wetting-induced collapse mechanism (Liu and Sun, 2002; Liu
et al., 2003) and slope failure mechanism (Chen and Liu, 2007; Liu and Bauer, 2007) of
granular soils. Discrete element simulation has already become an effective method and
also an important supplement of laboratory experiments in the study of mechanical
properties of granular materials.

In this paper, a biaxial compression test on granular materials under different
loading stress paths is numerically simulated by DEM, and a parameter that
characterizes the microstructures of the numerical samples is proposed. The evolution
of the proposed microstructure parameter during loading is then investigated, from
which a new yield function for granular materials is derived. The calibration for the
new yield function is carried out and the determination of the two parameters involved
in the new yield function is studied.

2. Discrete modeling of biaxial shearing test
The DEM is a numerical technique in which individual particles are represented as
rigid bodies. It provides a valuable tool to obtain quantitative information of all
microscopic features of an assembly of particles. In two dimensions each particle has
three degrees of freedom (two translations and one rotation). Each particle can be in
contact with neighboring particles or boundaries. In the present work, the particles
used in the numerical simulation are circular because of their simple shapes and fast
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contact detection. The mechanical interaction is characterized using the so-called soft
contact approach. In this approach, although the particles are assumed to be rigid for
purposes of shape definition, elastic deformation is allowed to take place at the
contacts. The constitutive contact law is shown in Figure 1. It consists of two parts:

(1) a stiffness model providing a linear elastic relation between contact force and
contact relative displacement in normal and shear directions; and

(2) a slip model enforcing a relation of Coulomb’s type between shear and normal
contact forces (Cundall and Strack, 1979).

Due to the dynamic formation of the model, energy dissipation through frictional
sliding may not be sufficient to reach a steady-state solution. Additional dissipation is
achieved by small amounts of viscous damping. The forces generated at a contact are
computed based on the overlap of the bodies at the contact and the stiffness of the
springs. The forces from all of the contacts on a single body are summed yielding a
resultant force, which is then used to compute the acceleration of the body according to
Newton’s second law of motion. After the acceleration is determined, new velocity and
displacement for the particle are computed using central difference explicit time
integration. With the newly computed displacement configuration, the state of
deformation at existing contacts is re-evaluated and the possible creation of new
contacts is evaluated, leading to a new cycle of computation.

The parameters involved in the DEM numerical analysis include the normal
stiffness kn, normal damping ratio ηn, tangent stiffness ks and tangent damping ratio ηs.

In this work, a biaxial shearing test is simulated using DEM. The DEM specimen
consists of 3,600 circular particles (disks) of 5 and 9 mm in diameter (mixing ratio of 3:2
by area), which is generated randomly within a 42× 28 cm rectangular area that is
bounded by four rigid walls. The initial void ratio of the specimen is 0.1752.

The input parameters used in the simulation are listed in Table I. The stiffness k is
obtained from the contact theory of two elastic discs by considering the possible stress

granule

granule

�n

�s

kn

ks

granule

granule

Divider

Divider

Figure 1.
DEM particle contact
model

Normal
stiffness (kn)

Tangent
stiffness (ks)

Normal
damping (ηn)

Tangent
damping (ηs)

Inter-particle
friction angle (φμ)

Particle
density (ρ)

9.0× 109 N/m2 3.0×108 N/m2 7.9× 104 N·s/m2 1.4×104 N·s/m2 16° 2,700 kg/m3

Table I.
Input parameters in
DEM simulation
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level applied to the granular sample (Roak, 1965), and the damping ratio η is the
critical attenuation coefficient of the single degree-of-freedom system vibration. The
inter-particle friction angle φu is obtained from the frictional tests on aluminum rods.
The simulation results agreed very well with the experimental results (Liu and Lu,
2000; Liu and Xu, 2001; Liu and Sun, 2002; Liu and Matsuoka, 2003; Liu, 2006).

As shown in Figure 2, the DEM simulation is performed along the following four stress
paths: isotropic compression, shearing under the condition of a constant p, shearing under
the condition of a constant σ3 and laterally confined compression (lateral displacement of
the specimen is kept to be zero). Figure 3 shows the numerically simulated results in terms
of the εv∼p relation for the isotropic and laterally confined compression paths and the
(σ1−σ3)∼ε1∼εv relations for the shearing paths under a constant p and σ3. The simulating
four stress paths all start from a same initial mean stress of p0¼ 50 kPa. It can be seen
that these numerically simulated stress-strain relationships have a regular pattern with
those obtained from experiments on granular soils.

3. Microstructures of granular materials
The microstructures of granular materials change with the increase in externally
applied stresses during the loading process. At present, there are several ways to
characterize the microstructures of granular materials, such as fabric tensor (Satake,
1982), coordination number, comprehensive structure potential (Xie and Qi, 1999) and
particle contact angles (Liu et al., 2009). In our previous works, we preferred to use the
particle contact angle, which is defined to be an angle of the connection line of two
contacting circular particles’ centers inclined to a certain base level, with a positive in
counterclockwise direction, as indicated in Figure 4. Here, the base level is chosen to be
the action plane of the major principal stress σ1.

Figure 5 shows the distributions of particle contact forces under isotropic
compression and shearing ( p¼ constant), respectively, in which the thickness of lines
represents the magnitude of the contact forces. It is seen that there are several force
chains formed by the particle contact forces. The force chains are nearly round under
isotropic compression, and tend to be elliptic when the particle contact forces begin to
concentrate along the direction of the major principal stress during shearing.

Denoting F (α) as the average of particle contact forces at the particle contact angle
α, the distribution of F (α) in accordance with Figure 5 is shown in Figure 6. It is seen
that the jagged distribution of F (α) can be fitted by a circle during isotropic

q

p0 px p0

S
he

ar
in

g 
at

 a
 c

on
st

an
t p

Sh
ea

rin
g 

at
 a

 c
on

st
an

t �
3

Laterally

confined compression

Isotropic compression

Figure 2.
Loading stress paths

in the DEM
simulation

1009

A yield
function

D
ow

nl
oa

de
d 

by
 E

m
er

al
d 

St
af

f,
 M

is
s 

Sa
ra

h 
L

iu
 A

t 0
1:

42
 2

9 
Ju

ne
 2

01
5 

(P
T

)



0.
45

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

0.
40

0.
35

0.
30

0.
20

0.
10

0.
25

0.
15

0.
00

50
10

0
15

0
20

0

p
(k

P
a)

p
(k

P
a)

ε�(%)

ε�(%)

ε 1(
%

)

ε�(%)

ε 1(
%

)

ε�(%)

25
0

30
0

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0
50

0
60

0
45

0
55

0

0.
05 40 35 30 20

0
1

2
3

4
5

6
7

8
0

1
2

3
4

5
6

7

1025 15 0

σ1–σ3(kPa)

5 –5

70 60 50 30 1040 20

σ1–σ3(kPa)

0

–1
0

–4
.0

–3
.5

–3
.0

–2
.0

–1
.0

–2
.5

–1
.5

0.
0

–0
.5

0.
5

–4
.2

–3
.7

–3
.2

–2
.2

–1
.2

–2
.7

–1
.7

–0
.2

–0
.7

0.
3

(a
)

(c
)

(d
)

(b
)

N
ot

es
: (

a)
 Is

ot
ro

pi
c 

co
m

pr
es

si
on

; (
b)

 la
te

ra
lly

 c
on

fin
ed

 c
om

pr
es

si
on

; (
c)

 sh
ea

rin
g 

un
de

r t
he

 c
on

di
tio

n 
of

 a
 c

on
st

an
t p

;
(d

) s
he

ar
in

g 
un

de
r t

he
 c

on
di

tio
n 

of
 a

 c
on

st
an

t �
3

Figure 3.
Numerically
simulated
stress-strain
relationships under
four different
stress paths

1010

EC
32,4

D
ow

nl
oa

de
d 

by
 E

m
er

al
d 

St
af

f,
 M

is
s 

Sa
ra

h 
L

iu
 A

t 0
1:

42
 2

9 
Ju

ne
 2

01
5 

(P
T

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/EC-04-2014-0093&iName=master.img-002.jpg&w=81&h=163
http://www.emeraldinsight.com/action/showImage?doi=10.1108/EC-04-2014-0093&iName=master.img-003.jpg&w=81&h=167
http://www.emeraldinsight.com/action/showImage?doi=10.1108/EC-04-2014-0093&iName=master.img-004.jpg&w=86&h=158
http://www.emeraldinsight.com/action/showImage?doi=10.1108/EC-04-2014-0093&iName=master.img-005.jpg&w=86&h=159


σ1

σ1

σ3σ3
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α

Figure 4.
Definition of particle

contact angle

σ1

σ3
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Notes: (a) Isotropic compression (σ1 = σ3); (b) shear state
(σ1 > σ3)

(a) (b)

Figure 5.
Distribution of
particle contact

forces

F(
α)

F(
α)

α
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Notes: (a) Isotropic compression (σ1 = σ3); (b) shear state 
(σ1 > σ3)

α

Figure 6.
Distribution of F (α)
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compression, and it gradually changes to be elliptic during shearing, which agree well
with the development of the contact force chains.

As the particle contact forces transfer through the contacting points, the concentration
of the particle contact forces along the direction of the major principal stress means the
increase in the number of the particle contact points along the major principal stress.
Denote N að Þ the number of particle contact points with respect to the contact angle α,
normalized by dividing the total number of the contact points at the whole sample.
The distribution of N að Þ in accordance with Figure 5 is shown in Figure 7. Similar to the
distribution of F(α), the jagged distribution of N að Þ changes from a rough circle during
isotropic compression to a peanuts-like or elliptic shape during shearing.

In fact, the force chains in Figure 5 can be regarded as the microstructures of
granular materials (Socolar et al., 2002), which contain two components: the contact
forces and the contact points. The distribution of F(α) characterizes the features of
contact forces, whereas the distribution of N að Þ represents the features of the contact
points (particle linkage and arrangement). Thus, a new distribution of the dot product
operation N að ÞUF að Þ that comprehensively considers the features of the contact forces
and contact points is proposed. Figure 8 shows the distribution of N að ÞUF að Þ,

α αN(α
).F

(α
) 

N(α
).F

(α
) 

(a) (b)

Notes: (a) Isotropic compression (σ1 = σ3); (b) shear state 
(σ1 > σ3)

Figure 8.
Distribution of
N að ÞUF að Þ

α

N (α
)

α
N (α

)

(a) (b)

Notes: (a) Isotropic compression (σ1 = σ3); (b) shear state 
(σ1 > σ3)

Figure 7.
Distribution of N að Þ
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combining with Figures 6 and 7. The new distribution of N að ÞUF að Þ has the same
characteristic as the distribution of either F(α) or N að Þ, i.e. the isotropy of the
microstructures maintains during isotropic compression and the anisotropy develops
during shearing.

The proposed distribution of N að ÞUF að Þ reflects the microstructures of the sample at
a certain stress state, which will change during the loading process. In order to
quantitatively characterize the change of the microstructures, a parameter S is
suggested, which is defined as:

S ¼ N að ÞUF að Þ
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
N að ÞUF að Þ� �2q

(1)

Figure 9 shows the evolution of the parameter S during the loading process under the
four different stress paths, in which the macro stress-strain relationships are given as
well. It is seen that the evolution of the parameter Smatches well with that of the macro
stresses during the loading process. As the macro-mechanical behavior of granular
materials is inherently related to their microstructures, the results shown in Figure 9
demonstrate the reasonability of the parameter S suggested.

Figure 10 gives the distributions of N að ÞUF að Þ at the points A and B in Figures 9(d),
respectively. The point A corresponds to a high level of stress with a high value of S,
and the point B represents the stress state after the failure with a decreasing S. It is seen
from Figure 10(b) that the N að ÞUF að Þ decreases roughly in the range of the contact
angle α¼ 35�55° and 215�235°, leading to the decrease of S value at point B. For this
sample, the internal friction angle φ is calculated to be 20°. Normally, the shear band is
inclined to the action plane of the major principal stress σ1 with an angle of
45°+ ∅/2¼ 55°. Within the shear band, some particle contacts disappear and the
contact forces decrease. The decrease of N að ÞUF að Þ at point B falls roughly within
the shear band.

4. Yield function derived from microstructures
Most of the yield functions of the existing elastic-plastic constitutive models for soils
have been obtained macroscopically from laboratory triaxial compression tests.
For example, Cam-clay model (Roscoe et al., 1963; Roscoe and Burland, 1968) was based
on the results of triaxial compression tests on normally consolidated clays, in which an
experimentally obtained stress-dilatancy relationship was used and plastic volumetric
strain is taken as hardening parameter. To our knowledge, few attentions have been
paid on the microscopic essence of yield functions. As the yielding of granular
materials is inevitably accompanied with the change of the microstructures of particles
(Matsuoka et al., 1995), and the parameter S proposed in this paper can characterize the
microstructures, it is thus possible to use the parameter S as a hardening parameter to
describe the yielding of granular materials. The numerical results in Figure 9 indicate
that the parameter S changes during compression and shearing, namely, it is directly
affected by stress states. Therefore, the parameter S is an internal variable that reflects
the changing degree of granular material microstructures after the application of
external stresses, and may be used as a hardening parameter to quantitatively describe
the yielding of granular materials.

As stated above, four different stress paths starting from the same mean stress
p¼ 50 kPa have been numerically simulated in this work. First, we consider the
changes of the parameter S along two stress paths: one is the isotropic compression
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path, and the other is the shearing path at a constant p (cf. Figure 2). Figures 11 and 12
give the changes of the microstructure parameter S plotted against the externally
applied macro stresses along these two stress paths, respectively. Both of them can be
fitted in the form of an exponential function, expressed as:

DSp

DS
¼ 0:939

px�p
p

� �0:978

(2)

After the failure
55°

Decrease in N (�).F (�) 

N(α).F(α)

N(α).F(α)

Notes: (a) At point A; (b) at point B  

Figure 10.
Distribution of

N að ÞUF að Þ at the
points A and B
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DSq

S
¼ 0:943

q
p

� �1:373

(3)

where p is the initial mean stress (50 kPa); S is the microstructure parameter at p¼ 50 kPa;
px and q are the mean stress and the deviator stress during loading, respectively; ΔSp and
ΔSq are the increments of the microstructure parameter S during isotropic compression
and shearing at a constant p with respect to the initial stress state, respectively.

As the microstructure parameter S is taken as the hardening parameter that is the
same on a yield surface, we can get:

DSp ¼ DSq (4)

Consequently, from Equations (2) and (3), we can obtain a yield function of granular
materials based on the microstructures, which is expressed as:

f ¼ k2
q
p

� �n2

�k1
px
p
�1

� �n1

¼ 0 (5)

where k1 and n1 are the coefficient and index related to isotropic compression,
respectively, while k2 and n2 are the coefficient and index related to the shearing under
the condition of a constant p, respectively. Equation (5) can be rewritten as:

f ¼ q
p
�k

px
p
�1

� �n

¼ 0 (6)

where n¼ n1/n2, k ¼ k1=k2
� �1=n2 . For the simulated sample, k1¼ 0.939, k2¼ 0.943,

n1¼ 0.978, n2¼ 1.373, k¼ 0.997, n¼ 0.712.
Similarly, we can get a yield function from the changes of the microstructure parameter

S along another two simulating stress paths, i.e. laterally confined compression and
shearing at a constant σ3 (cf. Figure 2). Figures 13 and 14 give respectively the relevant
changes of the microstructure parameter S, together with the fitting expressions. The yield
function derived from the changes of the microstructures along these two stress paths is:

f ¼ q
p
�0:951

px
p
�1

� �0:733

¼ 0 (7)
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Figure 15 shows the yield curves drawn from Equations (6) and (7). It can be
seen that the two curves agree very closely, illustrating that the changes of the
microstructure parameter S along different stress paths starting from the same initial
stress state are the same on a yield surface. Thus, it is rational to take the proposed
microstructure parameter S as a hardening parameter in the derivation of the yield
function for granular materials.

5. Validation of the derived yield functions
5.1 Determination of the yield function’s parameters
A yield function of granular materials is derived from the variation of the
microstructure parameter S in this paper, in which two parameters (n and k) are
involved. Although the two parameters depend on the microstructures, they should
also be related to the macro behaviors of granular materials. It is thus possible to
determine these two parameters from macro experiments, which is helpful to the
application of the derived yield function.

The microstructure parameter S is obtained from the dot product of the
distributions of both contact forces and particle arrangements, which are related
to the mechanical behavior and deformation of granular materials, respectively.
Therefore, the microstructure parameter S is equivalent to energy at a macro-level.
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As mentioned above, the yield function in this paper is derived on the assumption that
the changes of the microstructure parameter S are the same whatever the
loading stress paths are from the same initial stress state to a new yield surface.
Based on the same assumption, the two parameters involved in the yield
function can be determined from the energy changes that are obtained from macro
experiments. The energy change is calculated to be for compression paths and for
shearing paths, where and are the increments of volumetric strain and deviator stain,
respectively.

5.2 Validation by tests on one sand
Both the isotropic compression and the triaxial compression tests are conducted on
one sand, which has a grain diameter of 0.176~1.982 mm, a uniformity coefficient of
Cu¼ 2.387, a curvature coefficient of Cc¼ 0.905 and a specific weight of Gs¼ 2.67.
The density of the prepared specimen is 2.1 g/cm3. Starting from the initial stress state
of σ1¼ σ3¼ 100 kPa, the isotropic compression test is carried out by increasing
simultaneously σ1 and σ3, while the triaxial compression test is carried out by increasing
σ1 under the constant σ3¼ 100 kPa. Figure 16 gives the stress-strain relations of these
two tests, from which the energy changes can be calculated. Figures 17 and 18 show the
calculated energy changes against the macro stress during the isotropic and triaxial
compressions, respectively, which can be fitted by a power exponent equation.
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As stated above, ΔEp¼ΔEq when the samples yield. From the fitting equations as
shown in Figures 17 and 18, the parameters involved in Equations (5) and (6)
are determined as: k1¼ 149.35, k2¼ 96.38, n1¼ 1.14, n2¼ 1.63, k¼ 1.31, n¼ 0.70. Finally,
the yield function of the tested sand is expressed as:

f ¼ q
p
�1:31

px
p
�1

� �0:70

¼ 0 (8)

Figure 19 shows the yield surface drawn from Equation (8). For the comparison, the
yield surfaces of both the original and modified Cam-clay models, expressed as
Equations (9) and (10), are also shown in Figure 19.

The original Cam-clay model:

f ¼ q
p
�Mln

px
p
¼ 0 (9)

The modified Cam-clay model:

f ¼ q2þM 2 p2�px p
� � ¼ 0 (10)

In Figure 19, the parameter M used in the Cam-clay models is taken as 1.64, which is
calculated from 6 sinφ/(3−sinφ) with φ 40° (cf. Figure 16(b)). It can be seen that the yield
surface based on the changes of the microstructures is similar to those of the Cam-clay
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Figure 19.
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models, and is located between them. Equation (10) of the modified Cam-clay model is
re-arranged as:

f ¼ q
p
�M

px
p
�1

� �0:5

¼ 0 (10)

Thus, the yield function proposed in this paper has a same form as the modified Cam-
clay model with k¼M and n¼ 0.5. In Figure 19, the yield surface changes with the
mean stress px. In the Cam-clay models, px is related to the plastic volumetric strain,
namely, the hardening parameter is the plastic volumetric strain. In fact, plastic
volumetric strain is directly relevant to void ratio e, which represents the particles’
geometric arrangement and reflects particles’ microstructures. Thus, the hardening
parameter of plastic volumetric strain in the Cam-clay models indirectly reflects the
changes of particle microstructures. In the establishment of the Cam-clay model,
the energy dissipation equation of pdevpþqdedp ¼ Mpdedp is used, i.e., the energy
produced during the loading process is equal to the energy at failure. Obviously, this is
only an assumption and conflicts with the reality. However, this drawback does not
exist in the derivation of the microstructure-based yield function in this paper.

5.3 Validation by using test data of two rockfill materials
Furthermore, the proposed yield functions are analyzed using the test data of two
rockfill materials (named as SJ1 and SJ2), which were taken from a hydropower station
construction site. Figures 20 and 21 give the test results of the two rockfill materials,
respectively, in which the e-p curves were obtained from the laterally confined
compression tests with a specimen diameter of 45 cm and the stress-strain curves were
obtained from large-scale triaxial compression tests (the specimen diameter is 30 cm).

As the yield function proposed in this paper is based on the same changes of the
microstructures or energy from the same initial stress state to the yield surface,
the analysis for the energy changes in the triaxial compression tests and the laterally
confined compression tests should start from the same initial stress state. For the
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sample SJ1, the triaxial compression tests were carried out under the confining stresses
σ3¼ 600 and 900 kPa, which correspond to the initial void ratio e0¼ 0.373 and 0.367 in
the laterally confined compression tests, respectively (cf. Figure 20). Figure 22 gives the
energy changes of the sample SJ1 in the triaxial and laterally confined compression
tests in accordance with the two initial stress states, calculated using the test data in
Figure 20. Similarly, Figure 23 gives the energy changes of the sample SJ2 in the
triaxial and laterally confined compression tests in accordance with three initial stress
states of σ3¼ 400, 800 and 1,200 kPa (respectively corresponding to the initial void
ratios of 0.246, 0.241 and 0.234), calculated using the test data in Figure 21.

The yield functions established from the energy changes in Figures 22 and 23 are
listed in Table II, and the corresponding yield surfaces are shown in Figure 24. The
frictional angles of the samples SJ1 and SJ2 obtained from the triaxial compression
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tests are 31.0 and 36.2°, respectively, on which the yield surfaces of the Cam-clay
models are also shown in Figure 24. It is seen from Figure 24 that the shape of the yield
surface proposed in this paper is similar to those of the Cam-clay models for the two
rockfill materials as well. It can also be seen that the shape of the proposed yield surface
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is influenced by the initial void ratio of the samples. The smaller the initial void ratio is,
the closer the shape is to that of the modified Cam-clay. With the decrease in the initial
void ratio of the sample, the parameter k in the proposed yield function increases with a
maximum value of M, and the parameter n decreases with a minimum value of 0.5,
where M and 0.5 are the corresponding parameters in the modified Cam-clay model.

6. Conclusions
In this work, a biaxial compression test on granular materials is numerically simulated
by DEM and the variation of microstructure of granular materials under different
stress paths is analyzed, from which a yield function is derived. The determination of
the two parameters in the derived yield function is also studied. The proposed yield
function is calibrated by the test data of one sand and two rockfill materials. The main
points that can be concluded in this work are as follows:

(1) A parameter S is proposed to characterize the microstructure of granular
materials, which considers comprehensively the contact forces and the linkage as
well as the arrangement of granular particles. The numerical results indicate that
the evolution of the proposed microstructure parameter S during different loading
stress paths agrees well with the development of the macro stress and strain.

(2) It is considered that along different loading paths, the change of
microstructures of granular materials from the same initial stress state to a
yield surface is the same, on which a yield function is derived. There are two
parameters (k and n) involved in the derived yield function, which can be
determined by laboratory tests through the analysis of energy change during
loading process.

(3) The calibration through the test data of one sand and two rockfill materials
indicates that the shape of the new yield function is similar to that of the
Cam-clay models, and is influenced by the initial void ratio of the samples.
The smaller the initial void ratio of the sample is, the closer the shape of the new
yield function is to that of the modified Cam-clay model.

In this study, the rolling resistance was not considered in the contact model of particles
and a special particle packing with two different particle diameters was used in the
numerical simulation. Further study will cover the rolling resistance and a
continuously distributed specimen of grain assembly will be used to validate the
rationality of the derived yield function in the future.
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