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Abstract A hydromechanical interface element is proposed
for the consideration of the hydraulic-mechanical coupling
effect along the interface. The fully coupled governing equa-
tions and the relevant finite element formulations are derived
in detail for the interface element. All the involved matri-
ces are of the same form as those of a solid element, which
makes the incorporation of the model into a finite element
program straightforward. Three examples are then numeri-
cally simulated using the interface element. Reasonable re-
sults confirm the correctness of the proposed model and mo-
tivate its application in hydromechanical contact problems in
the future.

Keywords Hydromechanical interface element· Coupling
effect · Finite element· Contact problem

1 Introduction

It is well recognized that the existence of discontinuities
in geotechnical engineering may significantly influences the
mechanical and hydraulic responses of surrounding struc-
tures and foundations [1–4], such as the stress distribution
in a jointed arch dam during an earthquake and the seep-
age behavior of the dam foundation where a concrete cut-
off wall has been constructed. Generally, it is rather diffi-
cult to take all the discontinuities into account when they are
densely and randomly distributed within a host medium like
fractured rocks, and a reasonable approach to solve this kind
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of problem is to take the fractured medium as a porous
one so that an exact identification of the discontinuities is
avoided [5, 6]. Special attention, however, should be paid to
the heterogeneity and anisotropy effect of the medium during
the multi-physical processes [5, 6]. On the other hand, if the
discontinuities are countable and easily located, it is possible
to take them into consideration during physical processes in
a much more direct and precise way. This is the so-called
interface problem, where thermal, hydraulic and mechanical
processes may be involved. In the present study, the thermal
process is neglected and only the mechanical and hydraulic
processes are considered for an interface.

Generally, contact mechanics [7–11] focuses on the
mechanical response along the probable contact surfaces
while fracture hydraulics [12–15] takes the seepage behav-
ior within the discontinuities as the main concern. However,
in many geotechnical engineering, the mechanical and hy-
draulic behaviors within the interface appear combined and
influence each other, leading to the so-called hydromechani-
cal coupling effect [4, 13]. Taking the mechanical and seep-
age behaviors near the cutoffwall as an example, the opening
and closure of the gap between the riverbed and the cutoff

wall, governed mainly by external loads and the mechanical
response of the materials, can evidently change the seepage
path around the cutoff wall; on the other hand, the seepage
behavior along the interface controls the accumulation and
dissipation of the excessive pore water pressure near the cut-
off wall and subsequently influences the contact status along
the interface.

To simulate the hydromechanical coupling effect along
the interface in engineering, it is reasonable to combine a
contact algorithm with a fracture seepage model and con-
struct a mathematical model for the interface. Further-
more, the model should be simple so that its implementa-
tion in numerical tools is convenient. It was proved that
a mechanical contact problem is equivalent to an optimiza-
tion problem subjected to the kinematical restraint, i.e. the
non-penetration condition [7–10]. The Lagrange multiplier
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method (LMM) [7] is the fundamental approach for this
kind of problem in which the Kuhn–Tucker complementary
condition is directly introduced to the potential function of
the system, translating the constrained optimization problem
into an unconstrained one. Despite the precise satisfaction
of the constraint in LMM, the contact forces should also be
taken as basic variables as well as the nodal displacements,
this makes the implementation of LMM in a standard fi-
nite element program inconvenient. Another well known ap-
proach for contact problems is the so-called penalty method
(PM) [7, 16], in which a small amount of penetration be-
tween the neighboring surfaces is allowed and realized by
defining a large anti-penetration stiffness, for example the in-
terface elements proposed by Goodman et al. [1] and Simons
et al. [16]. Because no additional variables, except the nodal
displacements, are introduced in the governing equation, PM
can be easily incorporated into an existing finite element pro-
gram. This probably is the main reason that PM is so widely
used in geotechnical applications despite the possibility of
an ill-conditioned governing equation [16, 17].

For the simulation of the hydraulic behavior within the
interface, special elements with zero-thickness are also used,
which can be generally classified into two types depending
on the consideration or neglect of the transversal conductiv-
ity. When the transversal conductivity is neglected, the phys-
ical domain can be discretized without interface elements
and the longitudinal flow is modeled by adding “pipe” el-
ements to the edges along the interface [18]. This is similar
to the use of truss elements in simulating the anchor bolts in
the reinforcement of rock mass. Recently, another kind of
interface element was proposed by Segura [12], in which the
transversal flow, as well as, the longitudinal flow is included.
In this model the transversal flow within the interface is as-
sumed to be governed by the difference of the total hydraulic
head at both sides of the interface, and the longitudinal flow
velocity is proportional to the gradient of the total hydraulic
head. One advantage of Segura’s model is the feasibility of
using the same mesh for mechanical and seepage analysis or
even for fully coupled problems if relevant formulations are
established.

Based on the above recapitulation, it seems more con-
venient to establish a hydromechanical interface element for
the analysis of coupled contact problems. This is because
we really need an element to consider the mass conservation
of the water within the interface when it is open, although
the mechanical status of the element is inactive in this case.
On the other hand, the mechanical status of the interface ele-
ment should be activated once the penetration takes place. In
this case, the hydraulic status of the interface element may
be deactivated. In this paper, we propose a hydromechani-
cal interface element for the simulation of the discontinuities
widely presented in geotechnical engineering. The equilib-
rium equation of the interface element and the mass conser-
vation equation of the water within the interface are then for-
mulated, yielding the finite element formulations of the inter-

face element. The proposed model and derived formulations
are finally verified by three examples.

2 Physical background of the interface element

As mentioned already, the penalty method can not prevent
surface penetration during loading, which is often regarded
as a major insufficiency of those interface elements, i.e. the
non-penetration condition can not be satisfied rigorously re-
gardless of the arithmetic error of computers. However, if we
pay closer attention to the contact surfaces, we can find that
an apparent closed interface (Fig. 1a) does not necessarily
indicate that the real boundaries of the related blocks contact
seamlessly, which can be attributed to the existence of the
micro-asperities built on the surfaces (Fig. 1b). Assume that
the contact fronts of two contacting blocks are initially su-
perposed as shown in Fig. 1b, both the separation of the con-
tact fronts and the penetration of the asperities of one block
through the contact front of another block can be caused by
the external loads. The former may be observed as a sepa-
ration of two blocks (Fig. 1c) while the latter generally can
not be observed with the naked eye (Fig. 1d). This argument
seems to confirm the validity of the penetration of surfaces.

Fig. 1 Micro-inspection of the contact surfaces.a Apparent con-
tact status;b Microscopic surface geometry;c Separation of two
blocks;d Penetration

A closer inspection of the overlapped zone in Fig. 1d
indicates that the interlocked asperities from interfacing sur-
faces really constitute, to some extent, a new kind of porous
medium with different mechanical and hydraulic behaviors
from those of its father and mother blocks. Since the thick-
ness of the overlapped zone is very small, the mechanical
behavior is usually described using the normal stress and
penetration or the shear stress and sliding. For example, the
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thickness of the overlapped zone, interpreted as the penetra-
tion here, is assumed to be exponentially dependent on the
effective normal stress in this study, i.e.

δn = δno − δno exp
[
−

(σ′n
hs

)n]
, (1)

whereδn is the current penetration under the normal effec-
tive stressσ′n; δno is the maximal possible penetration which
can be achieved only if the normal stressσ′n approaches in-
finity; hs is a parameter with a dimension of stress andn is
a dimensionless constant. It can be concluded that the max-
imal possible penetrationδno is an overall evaluation of the
distribution and geometry of the micro-asperities and the pa-
rameterhs is an overall evaluation of their hardness.

Differentiating Eq. (1) with respect to time and simple
mathematical operations leads to the anti-penetration stiff-
ness

Kn =
σ̇′n

δ̇n
=

(σ′n/hs)1−n

n
hs

δno − δn
, (2)

in which a superposed dot over a quantity denotes its time
derivative. The anti-penetration stiffness is inversely propor-
tional to the unachieved penetrationδno − δn and tends to be
infinite when the penetration approaches the maximal limit,
and therefore prevents further penetration.

It is reasonable to postulate that the interlocking of
micro-asperities is increasingly pronounced when the pen-
etration increases, therefore the initial anti-sliding stiffness
can be assumed to be proportional to the anti-penetration
stiffness. However with the increase of shear stress, abra-
sion of the asperities and shear dilatancy may occur, both of
which result in a weaker interlocking effect and subsequently
lead to a lower anti-sliding stiffness. In addition, when the
shear stress increases to a limit value, which is generally as-
sumed to be proportional to the normal stress according to
the Coulomb friction law, the anti-sliding stiffness vanishes
absolutely and the interfacing surfaces will slide relatively
until a new balanced condition is achieved. Taking these
features into consideration, we suggest the following anti-
sliding stiffness in this study

Kt = Λ · Kn ·

[
1−
(
τ

µ · σ′n

)2]m
, (3)

whereΛ is the proportionality andµ is the friction coeffi-
cient;m is a dimensionless constant. Equation (3) is suitable
for the description of the shear behavior under monotonic
shearing, i.e.,τ · τ̇ > 0. In the case whereτ · τ̇ ≤ 0, the
anti-sliding stiffness is assumed to be a constant and equal to
the initial value, i.e.

Kt = Λ · Kn. (4)

Figure 2 shows a typical relation predicted by Eqs. (3) and
(4). The accumulation of relative sliding can be well re-
produced by defining two representations for the anti-sliding
stiffness under different conditions. In particular, if the pro-
portionalityΛ is high enough, the classical rigid-plastic slip

model can be retrieved.

Fig. 2 Shear behavior predicted by Eqs. (3) and (4)

Once the anti-penetration and the anti-sliding stiffness
of the interface elements are evaluated, the stiffness matri-
ces of these elements can be calculated and assembled to
the global stiffness matrix. Solving the governing equation
gives the incremental displacement along the two interfacing
surfaces, based on which the contact status can be updated
and the cycle of calculation continues. It is not difficult to
find that the introduction of interface elements translates a
geometrical nonlinear problem to a material nonlinear one,
leading to a simpler problem to be solved. In this sense, an
approximate satisfaction of the non-penetration condition is
enough and most of the parameters involved in the model
may not need exact evaluation. However, it is argued that the
explicit definition of the maximal possible penetration and
the use of asperity hardness as a main physically meaning-
ful parameter enables the modeler to avoid an uncontrollable
penetration and an arbitrary definition of the anti-penetration
stiffness.

As mentioned previously, the asperities within the over-
lapped zones constitute a porous medium, which is of course
permeable for water. However, the thickness of the effective
conducting channel decreases with the penetration as shown
in Fig. 3. Besides, further penetration will also result in a
lower “porosity” within the overlapped zones and therefore
lead to a lower longitudinal permeability coefficient. This
concept and the idealized conductive model illustrated in
Fig. 3 lead to the assumption that the effective thickness of
the conducting channelδ′n equals the unachieved penetration
δno − δn, on which the longitudinal permeability coefficient
is dependent according to the well known cubic law in rock
engineering [3, 4], i.e.

kt =
g · δ′2n
12v

. (5)

Herein,g denotes the gravity acceleration andv is the fluid
viscosity. For water at 20◦C, v ≈ 1.01 mm2/s [3]. Equa-
tion (5) is also suitable for the case where the interfacing
surfaces are out of contact, and where the “penetration”δn
should be interpreted as the interfacial gap. It is necessary to
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point out that Eq. (5) is based on the assumption that the in-
terfacing surfaces of the parallel plates forming the conduct-
ing channel are smooth [14] and the use of Eq. (5) for the
penetration condition is not so rigorous. However, a unified
representation for the longitudinal permeability coefficient
under both the penetrating status and the separating status
makes the transition between two statuses continuous, which
is very useful for the repression of possible numerical oscil-
lation.

Fig. 3 Idealization of the conductive model.a Initial status (no
penetration);b Penetrating status

In the following part, we always presume that the con-
ducting channels are fully filled with water, i.e. the over-
lapped porous medium is fully saturated. In this condition,
the fluid pressure at a point on one surface can be assumed
to be identical to that at the counterpart point on the oppo-
site surface. This restraint can be realized directly by pre-
scribing equivalent degrees of freedom for fluid pressure to
those contact node pairs or realized indirectly by modifying
the assembled governing equation according to the relevant
restraint equations before solving the global equation [12].

3 Finite element formulations of the hydromechanical
interface element

To derive the finite element formulations of the hydrome-
chanical interface element, the following naming and trans-
lating rules are first introduced: vectors and tensors in the
global coordinates (X, Y) are denoted by uppercase letters
while the lowercase letters denote the corresponding vari-
ables in the local coordinates (x, y) established in the tan-
gential and normal directions of the master surface (Fig. 4a).
For example, vectorU and vectoru denotes the displacement
in the global and local coordinates, respectively. They can be

translated mutually using the orthogonal rotating matrixR,
i.e.

u = R · U, U = RT · u. (6)

Fig. 4 Mechanical and hydraulic analysis of a coupled interface
element.a Coupled contact problem;b Mechanical analysis;c Hy-
draulic analysis
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For small deformation problems, Eq. (6) can also be written
in an incremental form, e.g. the incremental force vectors
can be translated by the following equations

∆ f = R · ∆F, ∆F = RT · ∆ f . (7)

After discretization of the contact surfaces, the relative
displacement and the pore pressure at a given point along an
interface element can be expressed using the interpolation
functions

ur = um − us = [Nm − Ns]

 ume

use

 = Bue, (8)

and

p =
1
2

(pm + ps) =
1
2

[N′m N′s]

 pme

pse

 = N′pe. (9)

Herein, the subscripts “m” and “s” denote master and slave
surfaces, respectively; the subscript “e” indicates that the
variables are associated with the nodes of an interface ele-
ment; the superscript “r” in Eq. (8) signifies that the dis-
placement is a relative one defined as the displacement of
the master surface minus that of the slave surface. It is also
necessary to point out that the interpolation function for pore
pressure in Eq. (9) and the assumption of identical pore pres-
sure at the contact node pairs ensures a uniformly distributed
fluid pressure in the normal direction of the interface ele-
ment.

3.1 Equilibrium equation of the interface element

The equilibrium equation of the interface element can be es-
tablished with the aid of the well known virtual work prin-
ciple [1]. However, a direct consideration of the equilibrium
condition for the interface element leads to the same govern-
ing equation.

Assume that a nodal force increment∆Fe =

(∆Fme ∆Fse)T is exerted to an interface element in equi-
librium, leading to an incremental shear and normal stress
∆σ′ = [∆τ ∆σ′n] and an incremental fluid pressure∆p. The
incremental effective stress∆σ′ and fluid pressure∆p should
exactly balance the external force increment, i.e.∫

L
BTRT(∆σ′ + ∆pm)dx = ∆Fe. (10)

Herein, the vectorm = [0 1]T is introduced for the repre-
sentation of Terzaghi’s effective stress principle and the in-
tegration is carried out along the interface. The incremental
effective stress in Eq. (10) can be further expressed by the
nodal displacement increments via the following constitutive
equation

∆σ′ = D∆ur, (11)

in which D = diag[Kt Kn]. Substituting Eq. (11) into
Eq. (10) and recalling the interpolation equations (8) and (9)
yields the discretized equilibrium equation of the interface

element, i.e.( ∫
L

B′T DB′dx
)
· ∆Ue +

( ∫
L

B′TmN′dx
)
· ∆pe = ∆Fe, (12)

whereB′ = RB. Comparing Eq. (12) with the equilibrium
equation of a solid element [19], one can find that Eq. (12)
has exactly the same form as that of a solid element, both of
which give the elementary stiffness and coupling matrices as
follows

K =
∫

L
B′T DB′dx, C =

∫
L

B′TmN′dx. (13)

It is important to note that the fundamental effective
stress principle by Terzaghi will not be suitable for the pen-
etration analysis when Biot’s coefficient α is not close to
unity [4, 19], i.e. ∆σ = ∆σ′ + α∆pm. However, as a
first approximation, Terzaghi’s simple effective stress prin-
ciple serves as a reasonable start point. Moreover, the use
of Terzaghi’s effective stress principle makes Eq. (12) still
sound when the interfacing surfaces are out of contact. Oth-
erwise, Biot’s coefficient must be set to unity when the in-
terfacial gap is not closed and the evolution of it must be
specified during penetrating, which obviously complicates
the problem.

3.2 Mass conservation equation of the water within the in-
terface element

Since the effective conducting channel is assumed to be fully
saturated with water, the following local mass conservation
equation can be obtained

∇ · v+
ṗ

Kw
= 0, (14)

in which v denotes the velocity of water andKw is its bulk
modulus. The weak form of Eq. (14) can be established
by introducing an arbitrary test functionw and integrating
Eq. (14) within the effective conducting channel, i.e.∫

V
w
(
∇ · v+

ṗ
Kw

)
dV = 0. (15)

In the following mathematical operations, we assume that
the smooth requirement of the test functionw can always
be satisfied automatically. Using Gaussian integration theo-
rem [19], Eq. (15) can be rewritten as follows∫

S
wn · vdS −

∫
V
(w∇) · vdV +

∫
V

w
ṗ

Kw
dV = 0. (16)

Herein,n is the outer normal to the boundary of the interface
element. It is important to note that the fluid velocity on the
boundary of the conducting channel is composed of the solid
velocity u̇ and the relative velocityvr while the fluid veloc-
ity within the conducting channel is not associated with the
velocity of the solid boundary (Fig. 4c), i.e.

v =

 u̇ + v̂r, on S,

vr, in V.
(17)
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The coupling effect takes place along the solid-fluid interface
and results in the following form of Eq. (16)∫

S
wn · u̇dS +

∫
S

wn · v̂rdS

−

∫
V
(w∇) · vrdV +

∫
V

w
ṗ

Kw
dV = 0. (18)

If we use the same interpolation equation for the test
function w as that for the pore pressurep, i.e. w = N′we;
∂w/∂y = 0, then the third term in Eq. (18) can be rewritten
as follows∫

V
(w∇) · vrdV =

∫
V

∂w
∂x

vrt +
∂w
∂y

vrndV

=

∫
V

∂w
∂x

vrtdV, (19)

where the fluid velocity in the normal directionvrn disap-
pears automatically while the velocity in the tangential direc-
tion vrt remains and can be calculated using Darcy’s law [3],
i.e.

vrt =
kt

ρwg

(
−
∂p
∂x
+ ρwgt

)
= k′t

(
−
∂p
∂x
+ ρwgt

)
. (20)

Herein,ρw andgt denote the density of water and the tan-
gential component of the gravity acceleration along the in-
terface. Based on Eqs. (19) and (20), Eq. (18) can now be
expressed in a matrix form

−wT
e

( ∫
L

N′TmTB′dx
)
· U̇e + wT

e

( ∫
L

N′T
δ′n
Kw

N′dx
)
· ṗe

+wT
e

( ∫
L

B̄
T
k′tδ
′
nB̄dx

)
· pe −

(
wT

e

∫
L

B̄
T
k′tδ
′
nρwgt

)
dx

+

(
wT

e

∫
S

N′Tn · v̂r

)
dS = 0, (21)

in which B̄ = ∂N′/∂x. The arbitrariness of the test function
w implies that Eq. (21) should be fulfilled for any test vector
we, which leads to the following governing equation

Sṗe − C′U̇e + Hpe = Qe, (22)

where the matrices are defined as follows

S=
∫

L
N′T
δ′n
Kw

N′dx,

C′ =
∫

L
N′TmTB′dx,

H =
∫

L
B̄

T
k′tδ
′
nB̄dx,

Qe =

∫
L

B̄
T
k′tδ
′
nρwgtdx−

∫
S

N′Tn · v̂rdS.

(23)

Equation (22) and the related matrices in Eq. (23) are again
of the same form as those of a solid element [19] except that
most of the integrations in Eq. (23) are carried out along the
long axis of the interface element.

For the implementation of a nonlinear coupling analy-
sis, Eq. (22) is always written in an incremental form. To
this end, the following assumptions within a time increment
∆t are adopted

ṗt+θ∆t =
∆p
∆t
, U̇t+θ∆t =

∆U
∆t
, pt+θ∆t = pt + θ∆p, (24)

where the subscript “e” is omitted for simplicity. The use
of the mass balance equation at the instantt + θ∆t gives the
following equation

C′Tt+θ∆t∆U − (St+θ∆t + θ∆tH t+θ∆t)∆p

= (H t+θ∆t pt −Qt+θ∆t)∆t, (25)

which can be combined with Eq. (12) to give a more com-
pact equation, i.e. Kt+θ∆t Ct+θ∆t

C′t+θ∆t −(St+θ∆t + θ∆tH t+θ∆t)

  ∆U

∆p

 =  ∆F

∆Q

 . (26)

For the sake of numerical stability, the interpolation factor
θ in Eqs. (24)–(26) is often chosen to be greater than 0.5,
i.e. 0.5 ≤ θ ≤ 1.0 [4]. Equation (26) gives the generalized
stiffness matrix and the extended equivalent nodal force of
the interface element, in which the incremental force vector
∆F can be calculated according to the loading process and
the incremental fluid flux vector∆Q evaluated via the right
hand side of Eq. (25). Comparison of the coupling matrices
C andC′ given in Eqs. (13) and (23) shows that the general-
ized stiffness matrix of the interface element is symmetrical
provided a symmetrical mechanical stiffness matrix. This is
quite a favorable feature for numerical efficiency.

4 Numerical examples

In this section, the proposed interface element model is em-
bedded into a finite element program FECAMM (finite el-
ement coupling analysis for multiphase media), and three
examples are numerically solved for the verification of the
model and the relevant formulations.

4.1 Hertzian contact problem

The Hertzian smooth contact problem is first investigated to
check the validity of the mechanical contact model and the fi-
nite element code. An infinite cylinder with a radius of 1.0 m
is vertically compressed by a loadF = 50 MN/m along the
generatrix. Both the infinite foundation and the cylinder are
assumed to be isotropically elastic and have the same param-
eters (Fig. 5a).

Hertz derived the analytical solution of this problem
and found that the contact pressure along the contacting sur-
faces follows an elliptical distribution, where the maximum
contact pressureq0 and the contact widthB read [10]

B =
√

4F(k1 + k2)r , ki =
1− v2

i

πEi
, q0 = 2F/πB. (27)
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Due to the symmetry of the model, half of the founda-
tion and a quarter of the cylinder are discretized with 800 and
391 quadrilateral elements, respectively. Figure 5b shows a
refined mesh near the contact surfaces. The probable contact
surfaces are represented by 9 interface elements in accord
with the solid mesh. This problem is solved numerically with
the following parameters

δno = 0.5 mm, hs = 3 GPa, n = 0.5, µ = 0.0

all of which are empirically evaluated here without recourse
to experiments. The translation of the geometrical nonlinear
problem to an “equivalent” material nonlinear one results in
a good performance in convergency and it can be expected
that the numerical efficiency will be more evident for those
elastoplastic contact problems, since only a layer of iteration
for material nonlinearity is needed.

The numerical results predicted by the program FE-
CAMM are compared with the analytical solution in Fig. 5c.
Both the contact widthB and the contact pressures at Gaus-
sian integration points (the black dots) closely approximate
the analytical solutions. The slight discrepancy of the contact
pressure is mainly caused by the discretization of the contact
surfaces, which can be effectively eliminated by using more
interface elements with a higher order. The resolution of nu-
merical solutions can be further improved by employing an
adaptive FEM technique [20, 21], which, however, is beyond
the scope of this paper.

Fig. 5 Hertzian contact problem and its solution

Another source for deviation between the numerical
and analytical solutions can be attributed to the difference
that the non-penetration condition is satisfied approximately
in the numerical model while the analytical solution is de-

rived without permission of penetration. Nevertheless, for
most geotechnical applications, the precision of the numeri-
cal results seems to be acceptable.

4.2 Fracture seepage problem

To verify the fracture seepage model and the relevant for-
mulations, the academic example devised by Segura and
Carol [12] is studied. The problem consists of a gravity dam
laying on a discontinuous medium, with the geometry and
boundary conditions specified in Fig. 6. The permeability
of the medium is assumed to be isotropic, with a seepage
coefficient of 0.1µm/s.

Fig. 6 Geometry of the fracture seepage problem

In this example, the deformation of the gravity dam
and the base medium is neglected, and the interface between
them is assumed to be impermeable. Only the steady-state
seepage behaviour within the highly fractured medium is an-
alyzed and the gravity of water is also neglected. The seep-
age domain is discretized with 318 quadrilateral solid ele-
ments and 288 interface elements.

In accordance with Segura’s work, three different
widths for the fractures are considered, i.e.δ′n = 0.01 mm,
0.05 mm and 0.1 mm, which according to Eq. (5) give the
following values for the tangential seepage coefficient kt =

8.09× 10−5 m/s, 2.02× 10−3 m/s and 8.09× 10−3 m/s. Fig-
ure 7 gives the distributions of the hydraulic head at the level
of 3 m below the ground surface predicted by FECAMM. For
all the three cases, the hydraulic head at the investigated level
decreases from the upstream to the downstream and the rate
of decreasing is lower within both sides of the gravity dam
than that underneath the gravity dam. The results provided
by Segura and Carol [12] using their hydraulic interface el-
ements are also plotted in Fig. 7 for comparison. It can be
seen that the numerical predictions made by FECAMM are
very close to the results of Segura in all three cases. This
seems to indicate that the neglect of the transversal flow in
our model does not result in an evident change of the hy-
draulic behaviour within the interface.
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Comparing the three distributions shown in Fig. 7, we
can also find that a slight change of the width of the fractures
results in a considerable change of the hydraulic head in the
base medium. These results confirm the necessity of taking
the mechanical-hydraulic coupling effect along the interfaces
into consideration in practical engineering. Only if the open-
ing and the closure of the fractures are estimated reasonably,
can the hydraulic responses within both the fractures and the
surrounding media be predicted more realistically.

Fig. 7 The numerical solutions of the fracture seepage problem

4.3 Hydromechanical interface problem

The previous two examples check the mechanical and hy-
draulic performance of the interface element separately. The
performance in coupling problems will be verified by this ex-
ample. Two blocks of isotropically elastic material are sep-
arated by an interfacial gap which is fully filled with water
as shown in Fig. 8. A uniformly distributed load is then
exerted on the left surface of the left block, and the deforma-
tion of the two blocks is to be determined. Herein, the solid

blocks are assumed impermeable and two cases with differ-
ent boundary conditions are investigated, i.e. the top of the
interface is sealed and unsealed.

Fig. 8 Definition of the hydromechanical interface problem

The two solid blocks and the probable contact surfaces
are discretized with 100 solid elements and 10 interface ele-
ments as shown in Fig. 9. The absence and existence of a top
seal can be easily simulated by deactivating or activating the
degrees of freedom for the pore pressure along the interface.
In the absence of the seal, it is easy to infer that the left block
will deform towards the right block and a certain portion of
the interfacing surfaces will come into contact as shown in
Fig. 9a. However, the presence of the top seal and the encap-
sulated water prevents such a deformation mechanism. The
deformation of the left block will first result in a compression
of the encapsulated water, which is bound to generate a fluid
pressure (the magnitude of the fluid pressure is 483.5 kPa).
The fluid pressure then identically acts on the interfacing sur-
faces and subsequently leads to a deformation of the right
block. The deformed mesh in this case is also plotted in Fig.
9b. Qualitatively, the deformation modes depicted in Fig. 9
show a good coincidence with the conceptual analysis, and
this confirms the reliability of the hydromechanical interface
element and the relevant formulations derived in this paper.

5 Summaries and conclusions

The tribological interaction of two interfacing surfaces may
result in deformation or breakage of the asperities built on
the surfaces, leading to an apparent penetration. This phys-
ical consideration confirms the use of an interface element
for the hydromechanical contact problem in this paper. The
use of an interface element also makes the hydromechanical
coupling effect along the interfacing surfaces easy to be con-
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Fig. 9 The deformation modes of the hydromechanical interface problem

sidered, both when the surfaces are in or out of contact. This
is benefited from the introduction of the effective thickness
of the conducting channel for water, which is defined as the
unachieved penetration, i.e. the maximal possible penetra-
tion in excess of the current penetration or interfacial gap.

The finite element formulations of the hydromechanical
interface element were derived using the equilibrium equa-
tion of the interface and the mass conservation equation of
the water within the effective conducting channel. The use
of Terzaghi’s effective stress principle and the consideration
of the coupling effect along the solid- fluid interface make the
governing equations fully coupled. Most of the involved ma-
trices are of the same form as those of a solid element and can
be assembled to the global stiffness matrix and the equivalent
nodal force vector by the standard assembling procedure.

The proposed hydromechanical interface element was
then incorporated into a finite element program and three
simple examples were studied to check the validity of the
model and formulations. Reasonable results confirm the fea-
sibility of using the hydromechanical interface elements for
coupled contact problems in geotechnical engineering.
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